Ping is a popular application used to check the presence of another node. Ping uses the ICMP Echo and Echo Reply handshake message for this purpose. The Echo and Echo Reply messages can be padded with additional bytes. This feature is used to send pings of different sizes.

User Invokes Ping command providing the destination IP address size of message and duration between subsequent pings

The Ping application sends an ICMP ECHO command addressed to the addressed server.

The ICMP Echo message is routed through the network, until it reaches the destination server.

Destination server responds to the ICMP Echo command with Echo Reply.

Ping application matches the sent sequence number with the received sequence number.

Display the delay and sequence number in the reply.

Ping resends ICMP Echo after incrementing the sequence number.

This cycle continues until the user cancels the ping.
LEG: Trace Route

Trace Route utility relies on the ICMP Time Exceeded message to trace the route from the source to the destination. A UDP message with low time to live (TTL) value is used to trace the route from the source to destination. Client starts with a TTL value of 1, this results in the first router dropping the packet and responding with ICMP Time Exceeded. This identifies the router that rejected the message. Client then increases the TTL value incrementally until the complete path has been identified.

User issues the Trace Route command

Trace Route then prepares a UDP datagram destined for the requested node. The time to live field is set to 1. This will ensure that the first node to receive this datagram will reject it. An invalid destination port number is used in detecting reached destination (more about this later)

Router receives the UDP packet and decrements the time to live field from 1 to 0

Since TTL has reached a value of 0, Router1 drops the datagram and responds back to the sender of the message with ICMP Time Exceeded message.

Display the information about Router1

Trace Route then sends the UDP message again. Now time to live field is set to 2. This will ensure that the second node to receive this datagram will reject it.

Router receives the UDP packet and decrements the time to live field from 2 to 1

The UDP datagram is forwarded to the next node in the path

Router receives the UDP packet and decrements the time to live field from 1 to 0

Since TTL has reached a value of 0, Router2 drops the datagram and responds back to the sender of the message with ICMP Time Exceeded message.

Display the information about Router2

Now a new UDP Datagram is sent with a TTL value of 3

The message has been delivered to the destination node. IP layer passes the message to the UDP layer.

UDP does not find the destination port. (Trace Route had used an invalid destination port to force this condition). ICMP then sends Destination Unreachable message to the source of the message

Receipt of "Destination Unreachable" signals completion of route tracing from the source to the destination
ICMP - Internet Control Message Protocol (Other ICMP Interactions)

<table>
<thead>
<tr>
<th>Client Node</th>
<th>Internet</th>
<th>Server Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Router1</td>
<td>Router2</td>
</tr>
<tr>
<td>User Application</td>
<td>Router1</td>
<td>Router2</td>
</tr>
<tr>
<td>User</td>
<td>Server</td>
<td>Server</td>
</tr>
</tbody>
</table>

EventHelix.com/EventStudio 1.0
03-Feb-02 18:51 (Page 3)

Copyright (c) 2002 EventHelix.com Inc. All Rights Reserved.

LEG: Other ICMP Interactions

ICMP Redirect is used to redirect traffic towards a particular network.

- **IP_Datagram**
 - destin = A
 - Router receives the datagram but decides that the datagrams to the specified destination should be routed using a different router.
 - Router informs the source of the message that messages towards A should be routed via Router2. (The IP Header and first 8 bytes of the original message are attached to the ICMP Redirect message).
 - Router still routes the packet towards the destination.
 - Update the routing table to reflect the redirect information. Now all messages to the specified network will be routed via Router2.

- **IP_Datagram**
 - destin = A
 - IP Datagram towards A now get routed via Router2.

ICMP Source Quench is used by routers and hosts to limit the flow of traffic.

- **IP_Datagram**
 - Client node sends a message to Router2.
 - Router 2 detects congestion and it has no buffer space to store the message.
 - Router 2 asks Client to reduce traffic towards Router 2.

ICMP Router Advertisement and Solicitation are optional messages. ICMP Router Advertisement is used by routers to advertise their routes to other nodes. ICMP Router Solicitation is used by nodes to request routing information from a router.

- **ICMP_Router_Advertisement**
 - ttl = thirty_min, sender_ip, preference
 - Router periodically advertises its IP addresses with preference for each IP address. The TTL value specifies the time for which this advertisement should be considered valid. Default is 30 minutes.
 - Advertisements are made on all system multicast address 224.0.0.1 or broadcast address 255.255.255.255.
 - Router1 starts a timer to initiate the next advertisement. Default timer is 10 minutes.
 - Host node explicitly solicits routing information.

- **ICMP_Router_Solicitation**
 - Router replies to the request.

- **AdTimer**
 - Time to initiate next Router advertisement (periodic).