This sequence diagram describes the call setup of a call from one IMS subscriber to another IMS subscriber. The calling subscriber is roaming in another IMS supporting network. The called subscriber is in the home IMS network.

The call flow focuses on the IMS routing of SIP dialog. The major steps in the call flow are:

1. IMS Routing of Initial SIP INVITE
2. IMS Routing of First Response to the SIP Invite.
3. PDP Context Activation and Audio/Video Path Setup.

This sequence diagram was generated with EventStudio System Designer 4.0 (http://www.EventHelix.com/EventStudio). Copyright © 2007 EventHelix.com Inc. All Rights Reserved.

Initiate Call
called@hims2.net

The user initiates a call to called@hims2.net.

The calling includes all supported codecs. This information is included as the first SDP offer in the initial invite.

The SIP phone sends the invite to called@hims2.net. The message contains Route entries for the terminal and the S-CSCF address that was extracted from the Service-Route header in the registration "200 OK" message. Security ports setup for IPSec SA establishment are used. "To" and "From" headers are also included in the message. These headers do not play a role in call processing.

The INVITE was sent using the registration time SA so the P-CSCF accepts the request.

P-CSCF verifies that the preferred public identity specified in the INVITE is currently registered.

The S-CSCF address for the user was obtained at the time of registration (Service-Route header in the "200 OK" response to the REGISTER message.)

The originating P-CSCF queries the DNS to obtain the IP address of the S-CSCF in the called subscriber's home network. The S-CSCF address for the user was obtained at the time of registration (Service-Route header in the "200 OK" response to the REGISTER message).
The P-CSF replaces the preferred identity header with the asserted identity header and forwards the message to the S-CSF in the home network. It adds a Record-Route header with its own address.

The P-CSF just acknowledges the INVITE to the UE. The "100 Trying" message indicates that the call setup is in progress.

The originating S-CSF queries the DNS to obtain the IP address of the I-CSF in the called subscriber's home network.

The S-CSF removes the Route header and routes the INVITE to the I-CSF IP address obtained from the DNS query. Note that the S-CSF has added the telephone URL to the P-Asserted-Identity. The Via and Record-Route headers are also updated with self address.

The I-CSF queries the Subscription Location Function (SLF) to identify the HSS that needs to be queried.

The S-CSF acknowledges the INVITE that was received from P-CSF. Query the HSS to obtain the S-CSF for the user.

As a part of the message processing, a route entry is added for the Term S-CSF. A new Via header is added to record that the message traversed this I-CSF. The message is forwarded to the first route header (in this case, the "Term S-CSF").

Map from the public URI to the called subscriber's registered IP address and port number.

The public URI in the SIP INVITE is replaced with the called subscriber's registered IP address and port number. The message is routed to the P-CSF IP address that was recorded at the time of registration. The Via and Record-Route headers are updated.
Obtain a media authorization token from the P-CSCF.

100 Trying

The terminating P-CSCF requests the Policy Decision Function (PDF) to generate a media authorization token. The token will be included in the INVITE sent to the terminating UE.

100 Trying

The P-CSCF updates the Via and Route-Record headers and forwards the request to the Called UE. Note that the secure port is included in the Via address specification. The message also includes the media authorization token. This token will have to be passed to the GGSN in the PDP context activation request.

100 Trying

Prepare a list of Codecs common between the Caller and the Called subscriber.

The Caller examines the SDP list of available codecs. It prunes the list by excluding codecs that are not supported by the called subscriber. This list will be included in the 183 message sent to the caller.

183 Session Progress

The UE replies indicating that the session is in progress. The contact address is set its own IP address. The Via and the Record-Route headers are copied from the received INVITE.

183 Session Progress

The P-CSCF removes its own Via header entry and addresses the message to the top via header (Term S-CSCF in this case). The P-CSCF also removes the secure port from the Record-Route.

183 Session Progress

183 message just retraces the path of the original INVITE. Each note removes its down entry from the via header and forwards the message to the Via entry at the top. The Record-Route header is not touched.
IMS Originating to IMS Terminating Call (Caller and Called are IMS Subscribers)

Calling UE	**IMS Network**	**Called UE**
Caller User Equipment | Visited IMS 1 | Home IMS 1 | Home IMS 2 | Called User Equipment
Caller | Orig P-CSCF | Orig S-CSCF | Term I-CSCF | Term S-CSCF | Term P-CSCF | Called

EventStudio System Designer 4.0
15-Dec-07 08:49 (Page 4)

Obtain a media authorization token from the PDF

The originating P-CSCF requests the Policy Decision Function (PDF) to generate a media authorization token. The token will be included in the “183 Session Progress” sent to the originating UE.

Just like other nodes, the Orig P-CSCF removes its own entry from the Via header. The P-CSCF also updates the Record-Route header to include the protected port number in its entry. This forces the terminal to send all responses using the protected IPSec SA. The message also includes the media authorization token. This token will have to be passed to the GGSN in the PDP context activation request.

PDP Context Activation and Audio/Video Path Setup

Select one Codec from the common codec list

PRACK

PRACK

PRACK

PRACK

PRACK

The Caller examines the received common codec list and selects the codec to activate.

The Caller now sends a PRACK to inform the called subscriber about the selected Codec. The message also indicates that currently the resources needed for meeting the quality of service requirements of the session are not available.

Now that the codec to be used has been selected, the PDP context activation is initiated for allocating resources for meeting the Quality of Service (QoS) requirements for the codec.

The called subscriber acknowledges the PRACK. The message also indicates that quality of service for the session is not met for the called subscriber.

The final codec at the called side is decided. So initiate the PDP context activation to allocate resources for meeting the QoS of the terminating leg of the call.
IMS Originating to IMS Terminating Call (Caller and Called are IMS Subscribers)

<table>
<thead>
<tr>
<th>Calling UE</th>
<th>IMS Network</th>
<th>Called UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caller User Equipment</td>
<td>Called User Equipment</td>
<td></td>
</tr>
<tr>
<td>Visited IMS 1</td>
<td>Home IMS 1</td>
<td>Home IMS 2</td>
</tr>
<tr>
<td>Orig P-CSCF</td>
<td>Orig S-CSCF</td>
<td>Term I-CSCF</td>
</tr>
<tr>
<td>Term S-CSCF</td>
<td>Term P-CSCF</td>
<td>Called</td>
</tr>
</tbody>
</table>

Caller PDP Context Activation

UPDATE

<table>
<thead>
<tr>
<th>Event</th>
<th>SDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 OK</td>
<td><Local-QoS: sendrecv></td>
</tr>
</tbody>
</table>

Notify the called end that the caller can now meet the quality of service in the send and receive direction.

Called PDP Context Activation

UPDATE

<table>
<thead>
<tr>
<th>Event</th>
<th>SDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 OK</td>
<td><Local-QoS: none></td>
</tr>
</tbody>
</table>

The called PDP context activation has been completed. At this point, the caller and the called PDP contexts are both active. The QoS for the call can now be met.

Ringing

Ring the called subscriber to notify the user about the incoming call.

180 Ringing

Inform the caller that the called subscriber is being rung. This serves as an implicit indication to the caller that the QoS at the called side has also been met.

PRACK

The called subscriber acknowledges the ringing message. The caller acknowledges the ringing message.

200 OK

The called subscriber acknowledges the PRACK.

Answer

The called subscriber answers the call.

ACK

Notify the caller that the call has been answered.

The caller acknowledges the "200 OK" message. The call is now ready to enter conversation mode.

Conversation on a direct RTP/RTCP connection between the caller and called subscriber SIP phones.