
EventStudio

System Designer 8
U S E R ' S M A N U A L

CONTENTS

1 GETTING STARTED ... 1

1.1 Download Visual Studio Code and EventStudio extension 1

1.2 Your First Project ... 2

1.3 Learn Feature Description Language (FDL) ... 3

1.4 Learn About Multiple Scenarios ... 5

1.5 Editing Tips .. 7

1.6 Community Edition vs Professional Edition ... 10

1.7 Explore More .. 10

2 VISUAL GUIDE TO FDL .. 11

2.1 Architecture Definition .. 11

2.2 Messages ... 12

2.3 Message Tagging ... 13

2.4 Object Interactions .. 14

2.5 Object Creation and Deletion ... 15

2.6 Timers .. 16

2.7 Actions.. 17

2.8 Resource Allocations ... 19

2.9 State Transitions ... 20

2.10 Sequence Groupings .. 21

2.11 Remarks .. 22

2.12 Styling .. 23

3 SCENARIOS AND DOCUMENTS .. 25

3.1 Scenarios ... 26

3.2 Documents... 26

3.3 Predefined Sequence Diagram Formatting Options ... 32

4 HOW TO… ... 36

4.1 Activate a License ... 36

4.2 Add New Scenarios and Documents .. 36

4.3 Add a New FDL File to the Project .. 39

4.4 Invoke EventStudio from Command Line .. 41

4.5 Insert FDL Snippets ... 43

4.6 Change EventStudio Configuration .. 44

4.7 Export to Microsoft Word .. 44

4.8 Convert EventStudio 6 Scenario Projects to JSON .. 46

5 FDL REFERENCE .. 47

5.1 Architecture and Feature Definition ... 47

5.2 Multiple Scenario Modeling .. 51

5.3 Messages ... 52

5.4 Object Interactions .. 56

5.5 Object Creation and Deletion ... 56

5.6 Timers .. 58

5.7 Actions.. 60

5.8 Resource Allocations ... 62

5.9 State Transitions ... 64

5.10 Sequence Groupings .. 65

5.11 Remarks .. 67

5.12 Preprocessor ... 69

5.13 Styles, Themes and Document Layout .. 70

6 REGULAR EXPRESSION REFERENCE ... 78

6.1 Regular Expression Examples .. 78

6.2 Regular Expression Rules ... 79

7 COLOR REFERENCE ... 81

8 DEPRECATED ... 86

8.1 Case statement ... 86

8.2 Leg statement .. 87

8.3 If-Else-Endif statement .. 88

8.4 If-Endif statement .. 89

8.5 Goto and Label statements .. 90

8.6 Remark and Block Remark Delimiters... 91

8.7 Verbose Statement Syntax ... 91

1 GETTING STARTED
1.1 Download Visual Studio Code and EventStudio extension

EventStudio is implemented as an extension to the popular Visual Studio Code editor. To get started:

1. Download and install Visual Studio Code from: https://code.visualstudio.com/

2. Install the EventStudio extension from the extension menu.

3. We also recommend:

a. Using the Atom One Dark Theme.

b. Enabling Auto Save (File → Auto Save)

4. If you are new to Visual Studio Code, the following link should get you started:

https://code.visualstudio.com/docs/getstarted/tips-and-tricks

1. View Extensions

2. Search for eventstudio

3. Click to install

https://code.visualstudio.com/
https://code.visualstudio.com/docs/getstarted/tips-and-tricks

EventStudio System Designer 8

Page | 2

1.2 Your First Project

1. Create a new folder named getting-started using Windows Explorer/Finder/Console.

2. Invoke Visual Studio Code and use the File → Open Folder1 / File → Open2
menu to open the getting-started folder.

3. Click on the EventStudio icon and then create a new project.

4. Select "Learn FDL visually with a starter tutorial template".

5. EventStudio sets up the project with the following files:

a. project.scn.json defining the project scenarios and documents.

b. sequence_diagram.FDL contains the FDL starter tutorial.

1 Windows
2 macOS

1. Click on the EventStudio icon

2. Click to create a new project

Select the tutorial project

EventStudio System Designer 8

Page | 3

6. EventStudio automatically builds the project and displays the output in your default browser.

1.3 Learn Feature Description Language (FDL)

1. Quickest way to learn FDL is to match the content of the sequence_diagram.FDL file with

the live preview.

a. Make sure that sequence_diagram.FDL window is active in Visual Studio Code.

b. Click the Preview button in the status bar (keyboard shortcut: Alt+P).

Click on document

titles to switch

documents.

Build

output

JSON project defining

scenarios & documents

Preview model

as you edit

Status bar

shortcuts

FDL model file

Build, Help, Locate

and Preview icons

Click to view

problems

Scenarios

Documents

EventStudio System Designer 8

Page | 4

c. EventStudio opens a live PDF preview for the file. When running on Windows, the preview

is synchronized to the cursor location in the FDL file3.

d. We recommend enabling auto save (File → Auto Save) so that FDL changes show

up in the preview as you type.

2. Use the sequence number in the preview to navigate back to the corresponding FDL file location

with Alt+O (Option+O on a Mac).

3 Cursor sync works on Windows only.

Live preview FDL

Live preview FDL

Find the sequence

number in the preview

Live preview FDL

EventStudio System Designer 8

Page | 5

3. You can also use snippets to quickly add FDL statements (Refer to Insert FDL Snippets).

1.4 Learn About Multiple Scenarios

1. Click on the “Edit project” menu to open the project.scn.json file. This file defines scenarios and

documents.

Live preview FDL

Use the sequence number from

the preview window and use the

Locate command to enter the

sequence number (Alt-O/Opt-O)

Open scenario project

Open scenario project

Basic Tutorial

scenario with no

additional defines

Advanced Tutorial

scenario that defines

the ADVANCED symbol

EventStudio System Designer 8

Page | 6

What are scenarios?

Scenarios identify the success and failure legs of a message flow. Scenarios are identified by

specifying a list of preprocessors defines. The FDL model uses #ifdef to mark out the

differences between flows.

2. In the FDL file you will see regions marked in the #ifdef ADVANCED … #endif blocks.

These declarations are used generate "FDL Basics Tutorial" and "FDL Advanced
Tutorial" using two scenarios defined in the project.scn.json file.

a. The default project file defines two scenarios:

i. Basic Tutorial without the any defines. This scenario excludes the content from

the ADVANCED region.

ii. Advanced Tutorial with the ADVANCED define. This scenario includes the

ADVANCED region as well.

b. Note that the two scenarios are included in the generated preview PDF file with

bookmarks for each scenario.

3. When you complete the design, you can generate the documents the “Build documents”

command.

#ifdef ADVANCED

and #endif identify

the part of the model

that should only be

included if the

ADVANCED is defined

in a scenario.

Scenarios are

bookmarked in

the PDF file.

EventStudio System Designer 8

Page | 7

Errors and warnings are displayed in the PROBLEMS window.

1.5 Editing Tips

Build all

documents

(Alt+B/Opt+B)

Errors and warnings are

displayed in the PROBLEMS

view.

Windows: Shift+Ctrl+M

macOS: Shift-Cmd-M

Click to view

problems

EventStudio System Designer 8

Page | 8

We have explored the EventStudio view, now let’s look at the Explorer view. This view shows the project

directory structure and the outline of the active FDL model file.

A few handy commands during editing are:

Output documents

Explorer view

Include directory with shared

style and theme files.

Model directory

contains FDL files.

FDL model outline

for easy navigation.

Click to open inc.FDL

file for updating the

styles and themes.

EventStudio System Designer 8

Page | 9

Ctrl+P/Cmd+P to

open any file.

Ctrl+Shift+P

Cmd+Shift+P

…and then type EventStudio

to list all commands.

EventStudio System Designer 8

Page | 10

1.6 Community Edition vs Professional Edition

EventStudio gets installed as the Community Edition. You can request a free 45 day free trial to the

Professional Edition.

Feature Supported in the Community

Edition?

Supported in the Professional

Edition?

Full FDL modeling support

• Visual Guide to FDL

• FDL Reference

Yes Yes

Styles, Themes and Document

Layout

Yes Yes

Define multiple Scenarios Yes Yes

View the design through

multiple Documents

Yes Yes

Preprocessor Yes Yes

Entities Modeled Limited to 10 50+

Document Page Limit Limited to 10 500+

Export to Microsoft Word Not supported Supported in the Windows

version

Paper Size Letter and A4 Letter, Legal, B, C, A4, A3, B4

and custom size

Document Footer Not customizable Customize from Settings

1.7 Explore More

• Visual Guide to FDL

• Scenarios and Documents

• Add New Scenarios and Documents

• Insert FDL Snippets

• Visual Studio Code Tips and Tricks

https://www.eventhelix.com/EventStudio/trial.htm
https://www.eventhelix.com/EventStudio/trial.htm
https://github.com/Microsoft/vscode-tips-and-tricks

EventStudio System Designer 8

Page | 11

2 VISUAL GUIDE TO FDL
This section provides a visual introduction to FDL. Sequence diagrams and the associated FDL are

shown. The snippet hints are shown on the right side of each diagram (Refer to section 4.5).

2.1 Architecture Definition

#include "inc.fdl"

system: Earth

subsystem:"North America" in Earth, Asia in Earth

module: Canada in "North America", "United States" in "North America"

module: India in Asia

component: California in "United States", Nevada in "United States"

component: Quebec in Canada, Rajasthan in India

eternal: "Los Angeles" in California, "San Francisco" in California

eternal: "Las Vegas" in Nevada, Montreal in Quebec, Jaipur in Rajasthan

feature "Action Statements" {

 "San Francisco" action "Object Level Action"

 California action "Component Level Action"

 "United States" action "Module Level Action"

 "North America" action "Subsystem Level Action"

 Earth action "System Level Action"

}

Explore More

• System, Subsystem, Module and Component declaration

• Eternal Object declaration

• Dynamic Object declaration

Snippet

arch

Snippet hint

EventStudio System Designer 8

Page | 12

2.2 Messages

module: Module_01

component: Component_01 in Module_01

eternal: a in Component_01, b in Component_01, c in Component_01

feature "Message Statements" {

 Message: a -> b % A simple message exchange

 "Message Reply": a <- b % Reply to the message. *|

 "Message With Parameters" (param1="Value 1", param2): b -> c

 % Parameters can be specified with messages.

 "Bold Message": b <= c % Message shown with a thick arrow.

 "Bidirectional": a <-> b % Model bi-directional interactions.

 chain {

 "Chain 1": a -> b

 "Chain 2": b -> c

 } % Messages can be chained to appear in a single line.

 b multicasts "Multicast Message" to a, c % Model multicasts.

 "Self Message": b -> b % A message sent to self.

 "Lost Message": a ->X b % Model a lost message.

 "Message to Right Environment": a -> env_r

 % External entities can be modeled as environment.

}

Explore More

• Message statement

• Chain statement

• Multicast statement

Snippet

msg

EventStudio System Designer 8

Page | 13

2.3 Message Tagging

eternal: a, b, c

feature "Message Statements" {

 "Message Cascade": a-sip -> b-udp -> c-sdp

 % Multiple tagged interactions in a single line.

 "Message Reply": a-sip <- b-udp <- c-sdp

 % Tagged message cascade reply.

 "Bold Message": b-udp <= c

 % Destination tagged Message shown with a thick arrow.

 "Bidirectional": a-sip <-> b-q931 % Tagged bi-directional interactions.

 b-udp multicasts "Multicast Message" to a-udp, c-udp

 % Tagged multicast.

 "Self Message": b-sip -> b-sdp % A message sent to self.

 "Lost Message": a-sip ->X b-udp % Model a lost message.

}

Explore More

• Message statement

• Chain statement

• Multicast statement

Snippets

msg-tag

EventStudio System Designer 8

Page | 14

2.4 Object Interactions

module: Module_01

component: Component_01 in Module_01

eternal: a in Component_01, b in Component_01, c in Component_01

feature "Object Interactions" {

 a invokes b.PerformInteraction(par1 = Value, par2, par3 = "Val 3")

 % a invokes the PerformInteraction method supported by b.

 b action "Check parameter values"

 b invokes c.DelegateWork

 % b further invokes the method DelegateWork in c.

 c action "Perform the Work"

 c.DelegateWork returns

 % The method c.DelegateWork returns back to the caller.

 b.PerformInteraction returns (status = SUCCESS)

 % b.PerformInteraction returns success to the caller.

}

Explore More

• Invokes and Returns statements

Snippets

invoke

EventStudio System Designer 8

Page | 15

2.5 Object Creation and Deletion

module: Module_01

component: Component_01 in Module_01

eternal: a in Component_01

dynamic: b in Component_01, c1 | c2 in Component_01

/* Dynamic object c1 and c2 share an axis. Only one of them

can be active at a given time */

feature "Object Creation and Deletion" {

 a creates b

 % Eternal object 'a' dynamically creates dynamic object 'b'.

 b creates c1(par1, par2="Value 2")

 % Dynamic object 'b' dynamically creates dynamic object 'c1'.

 b deletes c1

 % Dynamic object 'b' deletes dynamic object 'c1'.

 a deletes b

 % Eternal object 'a' deletes dynamic object 'b'.

 create c2

 % Anonymous create. Note that c2 reuses the axis used by c1.

 delete c2 |* Anonymous delete.

}

Explore More

• Create statement

• Delete statement

Snippets

create-delete

EventStudio System Designer 8

Page | 16

2.6 Timers

module: Module_01

component: Component_01 in Module_01

eternal: a in Component_01, b in Component_01, c in Component_01

feature "Timer Statements" {

 b starts Timer_01 % Start timer.

 b restarts Timer_01 % Restart the timer.

 b stops Timer_01 % Stop the timer.

 b starts Timer_02 % Start timer.

 timeout Timer_02 % Timer has expired.

 b starts periodic Timer_03

 |* Starting a periodic timer. The timer gets automatically

 Restarted on timer expiry. *|

 timeout Timer_03

 timeout Timer_03

 b stops Timer_03

}

Explore More

• Timer Start (One Shot and Periodic) statement

• Timer Restart statement

• Timer Stop statement

• Timeout statement

Snippets

timer-

EventStudio System Designer 8

Page | 17

2.7 Actions

2.7.1 Single Action

#include "inc.fdl"

system: Earth

subsystem:"North America" in Earth, Asia in Earth

module: Canada in "North America", "United States" in "North America"

module: India in Asia

component: California in "United States", Nevada in "United States"

component: Quebec in Canada, Rajasthan in India

eternal: "Los Angeles" in California, "San Francisco" in California

eternal: "Las Vegas" in Nevada, Montreal in Quebec, Jaipur in Rajasthan

feature "Action Statements" {

 "San Francisco" action "Object Level Action"

 California action "Component Level Action"

 "United States" action "Module Level Action"

 "North America" action "Subsystem Level Action"

 Earth action "System Level Action"

}

Explore More

• Action statement

Snippets

action-

EventStudio System Designer 8

Page | 18

2.7.2 Multiple Action

#include "inc.fdl"

system: Earth

subsystem:"North America" in Earth, Asia in Earth

module: Canada in "North America", "United States" in "North America"

module: India in Asia

component: California in "United States", Nevada in "United States"

component: Quebec in Canada, Rajasthan in India

eternal: "Los Angeles" in California, "San Francisco" in California

eternal: "Las Vegas" in Nevada, Montreal in Quebec, Jaipur in Rajasthan

feature "Multiple Action Statements" {

 "San Francisco", "Las Vegas" action "Object Level Joint Action"

 California, Quebec action "Component Level Joint Action"

 "United States", Canada action "Module Level Joint Action"

 "North America", Asia action "Subsystem Level Joint Action"

 "United States", Jaipur action "Module and Object Joint Action"

}

Explore More

• Action statement

• Action Begin statement

• Action End statement

Snippets

action-

EventStudio System Designer 8

Page | 19

2.8 Resource Allocations

module: Module_01

component: Component_01 in Module_01

eternal: a in Component_01, b in Component_01, c in Component_01

feature "Resource Allocations" {

 b allocates "Frequency" % Allocate a resource.

 b frees "Frequency" % Free a resource.

 b, c allocate "Call Resources" % Joint resource allocate.

 b, c free "Call Resources" % Joint resource free.

 Module_01 allocates "Module Resources"

 % Module level resource allocation.

 Module_01 frees "Module Resources"

 % Free module level resources.

}

Explore More

• Resource Allocate statement

• Resource Free statement

Snippets

resource

EventStudio System Designer 8

Page | 20

2.9 State Transitions

module: Module_01, Module_02

component: Component_01 in Module_01, Component_02 in Module_02

eternal: a in Component_01, b in Component_01, c in Component_02

feature "State Transitions" {

 b state = "Awaiting Dial-tone" % Individual object state.

 a,b,c state = "Conversation" % Joint state transition.

 Component_01 state = "Call Active"

 % Component level state transition.

}

Explore More

• State Change statement

Snippets

state

EventStudio System Designer 8

Page | 21

2.10 Sequence Groupings

module: Module_01

component: Component_01 in Module_01

eternal: a in Component_01, b in Component_01, c in Component_01

feature "Sequence Grouping" {

 sequence "Call Setup" {

 IAM: a -> b

 b action "Check digits"

 ACM: a <- b

 }

 a, b action "Set up the voice path"

 sequence "Call Release" {

 REL: a -> b

 RLC: a <- b

 }

}

Explore More

• Sequence Block Statement

Snippets

sequence

EventStudio System Designer 8

Page | 22

2.11 Remarks

module: Module_01

component: Component_01 in Module_01

eternal: a in Component_01, b in Component_01, c in Component_01

feature "Remarks" {

 msg: a -> b |* A remark is printed on the right-hand side.

 The remark is associated with the statement preceding it. *|

 ack: a <- b % Single line remark

 |= A block remark can be used to display detailed comments across

 the width of a sequence diagram.

 Text can be split into paragraphs by using an extra line break.=|

 /* C-style comment ignored in document generation. */

 heading "Heading. Show up as bookmarks in PDF documents."

 issue "Results in a warning. Used to track unresolved issues"

}

Explore More

• Remark statement

• Block Remark statement

• Comment statement

• Heading statement

• Issue statement

EventStudio System Designer 8

Page | 23

2.12 Styling

The inc.FDL file defines axis and interaction styles

2.12.1 Axis Styles

Change color, font and other attributes assigned to the individual axis by specifying a style prefix to

system to object level entities. Here is the axis styling that is predefined in the inc.FDL file.

eternal : [_user] "Los Angeles" in California

eternal: separator in California

eternal: [_radio] "San Francisco" in California

eternal : [_client] "Las Vegas": DesertCity in Nevada

eternal : [_server] Jaipur: DesertCity in Rajasthan

eternal : [_backend] Johannesburg in Gauteng

dynamic : [_core] Toronto |[_router] Ottawa in Ontario

Axis style specification

Snippets

style

EventStudio System Designer 8

Page | 24

2.12.2 Interaction Styles

Change color, font and other attributes assigned to messages, actions, object interactions with inline

style specification.

 sequence "Object Interactions" {

 [_redblue] "Los Angeles" invokes "San Francisco".TakeAction(actionId)

 % Model method invocation and return.

 [_bluegreen] "San Francisco" invokes Jaipur.TakeAnotherAction(actionId)

 [_good] Jaipur.TakeAnotherAction returns

 [_purpleblue] "San Francisco".TakeAction returns

 }

 sequence "Object Creation and Deletion" {

 [_grey] "Los Angeles" creates Ottawa(param1 = "Good Bye", param2,

 param3 = Value)

 [_error] "Los Angeles" deletes Ottawa

 create Toronto

 delete Toronto

 }

Interaction styles

You can automatically assign styles when the

interaction text matches a regular expression.

Refer to section 5.13 to learn more.

Snippets

style

EventStudio System Designer 8

Page | 25

3 SCENARIOS AND DOCUMENTS
Scenarios and documents are defined by the project.scn.json file in the project directory. You can

open the file by clicking on the EventStudio sidebar. The following figure also shows scenarios defined

in the tutorial project.

A sample project.scn,json file is shown below.

{
 "scenarios": [
 {
 "modelPath": "model/sequence_diagram.FDL",
 "scenarioName": "Basic Tutorial"

 },
 {
 "modelPath": "model/sequence_diagram.FDL",
 "scenarioName": "Advanced Tutorial",
 "defines": ["ADVANCED"]
 }
],
 "documents": [
 {
 "documentName": "tier1"
 },
 {
 "documentName": "component-poster",

Open scenario project

Open scenario project

Basic Tutorial

scenario with no

additional defines

Advanced Tutorial

scenario that defines

the ADVANCED symbol

EventStudio System Designer 8

Page | 26

 "interactionLevel": "component",
 "defines": ["POSTER"]

 },
 {
 "documentName": "tier3",
 "interactionLevel": "module"
 }
]
}

The file is divided into "scenarios" and a "documents" sections. These sections are described below:

3.1 Scenarios

The "scenarios" section is defined as an array of scenario objects. The scenario objects identify the

models and their scenarios that should be included in the generated documents.

Each scenario object can contain the following fields:

"modelPath" Mandatory Specify a relative path from the project.scn.json file to

the FDL file. Note that file name should use double

slashes to comply with JSON formatting rules.

"scenarioName" Mandatory A title that summarizes the scenario. This title will be

used in PDF bookmarks.

"defines" Optional A list of preprocessor defines specific to this scenario.

Use #ifdef and #ifndefs in FDL files to conditionally

identify the contents that should be included for this

scenario.

"legs" Optional A list of scenario legs that are being called out for the

scenario. If a scenario leg is not called out, EventStudio

defaults to the first leg in an FDL case statement.

Note that this primitive is defined for backward

compatibility with EventStudio 6 with the now

deprecated case-leg-endcase statement.

3.2 Documents

The "documents" section is defined as an array of document objects. The document objects specify the

document type, filters and preprocessor defines for the document.

Each scenario object can contain the following fields:

"documentFormat" Optional

(defaults to "pdf"

when omitted)

"Choose between pdf, emf (Microsoft Word Picture),

xml or html formats. pdf and emf formats are

available for sequence, context or collaboration

diagrams. Summary documents and unit test

EventStudio System Designer 8

Page | 27

procedures are generated in html. Use xml when

exporting interactions to be used in other tools.

"documentName" Mandatory Defines the file name for the document without the

file extension.

"documentType" Optional

(defaults to

"sequence-

diagram" when

omitted)

Specify the document type. Choose between:

• "sequence-diagram"

• "context-diagram"

• "collaboration-diagram"

• "export-document"

• "statistics-document"

• "unit-tests"

• "summary-document"

"internalMargin" Optional

(defaults to "large"

when omitted)

Padding from the page boundaries to the objects.

Choose between "small", "medium" and "large".

"objectSpacing" Optional

(defaults to "large"

when omitted)

Spacing between objects in a context diagram.

Choose between "small", "medium" and "large".

"expandSequence" Optional

(defaults to

"expand-always"

when omitted)

Specify how sequences should be expanded when

they occur in multiple scenarios. Choose between

"do-not-expand", "expand-first-time-only" or "expand-

always".

"exclude" Optional List of items to be excluded from the generated

sequence diagram. You can exclude:

• "timers"

• "resources"

• "actions"

• "remarks"

• "blockRemarks"

• "states"

• "parameters"

"defines" Optional Preprocessor defines specific to this document. Use

#ifdef and #ifndefs in FDL files to conditionally

identify the contents that should be included in this

document. POSTER and PRESENTATION defines

may be used here to configure predefined settings

for these document types.

EventStudio System Designer 8

Page | 28

"interfaceFilter" Optional Specify the entity that should be the focus of this

diagram. System, subsystem, module, component or

objects may be specified as entities. You may also

specify types when more than one instance of a type

is included in a document.

" textFilter" Optional Specify a string pattern that is contained in all the

messages, methods and actions you wish to include

in a document.

"regexTextFilter" Optional Specify a regular expression that should match the

messages, methods and actions you wish to include

in a document.

"interactionLevel" Optional Specify the level of abstraction in generated

documents. Choose between "component",

"module", "subsystem", "system" and "env" to select

the level of interactions that should be shown.

For example, if you select "subsystem", the

document will focus on only inter subsystem

interactions.

"columnWidth" Optional

(defaults to "large"

when omitted)

Spacing between objects axis in a sequence

diagram. Choose between "small", "medium" and

"large".

"remarkWidth" Optional

(defaults to "large"

when omitted)

Width of the remark column on the right side of a

sequence diagram. Choose between "small",

"medium" and "large".

3.2.1 Required Document Fields for Different Document Types

Sequence

Diagram

• Use case or message sequence chart in Adobe PDF or Microsoft Word

Picture (EMF) format.

• Interactions between entities are listed in time sequence.

• All scenarios defined in the Scenario Project are included in the

diagram.

Example:

"documents":

[

 {
 "documentName": "Sample PDF sequence diagram"
 },
 {
 "documentName": "Sample MS Word sequence diagram",
 "documentFormat": "emf"

EventStudio System Designer 8

Page | 29

 }
]

Interface

Sequence

Diagram

• Sequence diagram that just include interactions with a specified entity

or entity type.

• You can generate the following:

o System interface diagrams

o Subsystem interface diagrams

o Module interface diagrams

o Subsystem interface diagrams

o Eternal or dynamic object interaction diagrams

Example:

"documents":

[

 {
 "documentName": "Desert City type interactions",
 "interfaceFilter": "DesertCity"
 },
 {
 "documentName": "Las Vegas interactions",
 "interfaceFilter": "Las Vegas"
 }
]

Interaction

Sequence

Diagram

• Sequence diagrams that allow you to zoom in and out of different

levels of abstraction. You can also generate documents that just

contain message interactions for a specific tag (Refer to

• Message Tagging).

• You can generate the following:

o Inter system interaction diagram

o Inter subsystem interaction diagram

o Inter module interaction diagram

o Inter component interaction diagram

Example:

"documents":

[

 {
 "documentName": "System level sequence diagram",
 "interactionLevel": "system"
 },
 {
 "documentName": "Component level interactions",
 "interactionLevel": "component"
 }
]

Message Filter

Sequence

Diagrams

• Sequence diagrams listing only messages that contain a specified

string or match a regular expression.

EventStudio System Designer 8

Page | 30

• For example, a regular expression of "{Request}|{Response}" will

generate a document with messages that contain the strings

"Request" or "Response" in the message or method name.

Example:

"documents":

[

 {
 "documentName": "Request or response messages",
 "regexTextFilter": "{Request}|{Response}"
 },
 {
 "documentName": "Messages containing Attach",
 "textFilter": "Attach"
 }
]

Unit Test

Procedures

• Unit test procedures for a specified object.

• The scenarios are tabulated as steps of actions and the associated

expected results.

• The procedures may be used for as a guide for code reviews.

Example:

"documents":

[

 {
 "documentName": "Las Vegas Unit Tests",
 "documentType": "unit-tests"
 }
]

Summary

Statistics

Document

• Object wise summary of all interactions.

• The document summary can be generated for all objects or objects

within a module or a component.

Example:

"documents":

[

 {
 "documentName": "Object wise summary for all",
 "documentType": "summary-document"
 },
 {
 "documentName": "Object wise for Las Vegas",
 "documentType": "summary-document",
 "interfaceFilter": "Las Vegas"
 },
]

Statistics

Document

• Matrix of module, component and object level statistics.

EventStudio System Designer 8

Page | 31

• Total number of message interactions between two objects can be

tracked by following the source object row and destination object

column.

"documents":

[
 {
 "documentName": "Overall statistics",
 "documentType": "statistics-document"
 }
]

Collaboration

Diagram

• Collaboration Diagram or Context Diagram in Adobe PDF or Microsoft

Word Picture (EMF) formats.

• The time component of the interactions is de-emphasized in these

diagrams.

Example:

"documents":

[
 {
 "documentName": "PDF context diagram",
 "documentType": "context-diagram"
 },
 {
 "documentName": "MS Word collaboration diagram",
 "documentFormat": "emf",
 "documentType": "collaboration-diagram"
 }
]

Interface

Collaboration

Diagram

• Analogous to Interface Sequence Diagrams

Example:

"documents":

[

 {
 "documentName": "PDF Desert City Context",
 "documentType": "context-diagram",
 "interfaceFilter": "DesertCity"
 },
 {
 "documentName": "MS Word Las Vegas collab diagram",
 "documentFormat": "emf",
 "documentType": "collaboration-diagram",
 "interfaceFilter": "Las Vegas"
 }
]

Interaction

Collaboration

Diagrams

• Analogous to Interaction Sequence Diagrams

Example:

"documents":

[

 {

EventStudio System Designer 8

Page | 32

 "documentName" : "PDF Module Context",
 "documentType" : "context-diagram",
 "interactionLevel": "module"
 },
 {
 "documentName" : "MS Word Component collab diagram",
 "documentFormat" : "emf",
 "documentType" : "collaboration-diagram",
 "interactionLevel": "Component"
 }
]

Message Filter

Collaboration

Diagram

• Analogous to Message Filter Sequence Diagram

Example:

"documents":

[
 {
 "documentName" : "PDF Request-Response Context",
 "documentType" : "context-diagram",
 "regexTextFilter" : "{Request}|{Response}"
 },
 {
 "documentName" : "MS Word Attach collab diagram",
 "documentFormat": "emf",
 "documentType" : "collaboration-diagram",
 "textFilter" : "Attach"
 }
]

XML Document • Export to XML

• The generated XML can be transformed into code and other

documents using XSLT.

Interface XML

Document

• Analogous to Interface Sequence Diagrams

Interaction XML

Document

• Analogous to Interaction Sequence Diagrams

Message Filter

XML Document

• Analogous to Message Filter Sequence Diagram

3.3 Predefined Sequence Diagram Formatting Options

The starter projects created with the "EventStudio: New Scenario Project" command support convenient

defines that you can use to quickly adjust the layout of generated sequence diagrams.

3.3.1 Choose Sequence Diagram Header and Remark format

The following options are available for choosing header and remark layout:

• Choose between a single tier header and a full multi-tier header (USE_MULTI_TIER_HEADER).

• Choose between remarks on the right side or callout remarks (USE_CALLOUT_REMARKS).

EventStudio System Designer 8

Page | 33

Document definition Generated sequence diagram

 "documents": [

 {

 "documentName":"tier1"

 }

]

"documents": [

 {

 "documentName":"tier1",

 "defines": [

 "USE_MULTI_TIER_HEADER"

]

 }

]

"documents": [

 {

 "documentName":"tier1",

 "defines": [

 "USE_CALLOUT_REMARKS"

]

 }

]

EventStudio System Designer 8

Page | 34

"documents": [

 {

 "documentName":"tier1",

 "defines": [

 "USE_CALLOUT_REMARKS",

 "USE_MULTI_TIER_HEADER"

]

 }

]

3.3.2 Choose Between Document, Presentation and Poster Layouts

Three predefined layout modes are in the inc.FDL file for the project:

Regular sequence diagram

• US Letter paper size

• Portrait mode

Presentation

• US legal paper size

• Landscape mode

Poster

• US B paper size

• Portrait

"documents": [

 {

 "documentName":"tier1"

 }

]

"documents": [

{

 "documentName":"tier1",

 "defines": [

 "PRESENTATION"

]

 }

]

"documents": [

{

 "documentName":"tier1",

 "defines": [

 "POSTER"

]

 }

]

The above definitions are the defaults. You can change these by just editing the inc.FDL file defaults.

#define DEFAULT_PAPER_SIZE "letter"

/* "letter", "legal", "B", "C", "A4", or "A3" */

#define DEFAULT_ORIENTATION "portrait-only"

/* "portrait-only" or "landscape-only" */

#define PRESENTATION_PAPER_SIZE "legal"

/* "letter", "legal", "B", "C", "A4", or "A3" */

#define PRESENTATION_ORIENTATION "landscape-only"

/* "portrait-only" or "landscape-only" */

EventStudio System Designer 8

Page | 35

#define POSTER_PAPER_SIZE "B"

/* "letter", "legal", "B", "C", "A4", or "A3" */

#define POSTER_ORIENTATION "portrait-only"

/* "portrait-only" or "landscape-only" */

EventStudio System Designer 8

Page | 36

4 HOW TO…
• Activate a License

• Add New Scenarios and Documents

• Add a New FDL File to the Project

• Invoke EventStudio from Command Line

• Insert FDL Snippets

• Change EventStudio Configuration

• Export to Microsoft Word

• Convert EventStudio 6 Scenario Projects to JSON

4.1 Activate a License

Follow this procedure to activate a full or trial license.

1. Click the EventStudio icon to display the EventStudio sidebar. Then click “Manage license”.

2. Click on the “Activate license” option.

3. Follow the prompts to upload the license file.

4.2 Add New Scenarios and Documents

Adding a new scenario is best explained with an example.

4.2.1 Before Adding Scenario

1. Click on the EventStudio icon

2. Click “Manage license”

EventStudio System Designer 8

Page | 37

Let's start with a project that contains the following two files.

project.scn.json http.FDL

{

 "scenarios": [

 {

 "modelPath": "model/http.FDL",

 "scenarioName": "200 OK",

 "defines": ["SUCCESSFUL"]

 }

],

 "documents": [

 {

 "documentName": "summary-flow"

 }

]

}

eternal: client, server

feature "Web Browsing" {

#ifdef STARTUP

 SYN: client -> server

 "SYN+ACK": client <- server

 ACK: client -> server

#endif

 "HTTP Request": client -> server

#ifdef SUCCESSFUL

 "200 OK": client <- server

#else

 "404 Not Found": client <-

server

#endif

}

At this point the generated sequence diagram is generated for one scenario. The diagram looks like:

Scenario summary-flow.pdf

"200 OK"

4.2.2 After Adding Scenario

A new scenario addition is shown in the highlighted text. The "modelPath" and "scenarioName" need to

be specified for a new scenario. You may also specify additional preprocessor defines that are needed

for a scenario. In the highlighted case, not defining a preprocessor selected the #else-#endif part of

the FDL file.

project.scn.json http.FDL

{

 "scenarios": [

 {

 "modelPath": "model/http.FDL",

 "scenarioName": "200 OK",

 "defines": ["SUCCESSFUL"]

 },

eternal: client, server

feature "Web Browsing" {

#ifdef STARTUP

 SYN: client -> server

 "SYN+ACK": client <- server

 ACK: client -> server

EventStudio System Designer 8

Page | 38

 {

 "modelPath": "model/http.FDL",

 "scenarioName": "404 Not found"

 }

],

 "documents": [

 {

 "documentName": "summary-flow"

 }

]

}

#endif

 "HTTP Request": client -> server

#ifdef SUCCESSFUL

 "200 OK": client <- server

#else

 "404 Not Found": client <-

server

#endif

}

At this point the generated sequence diagram shows two scenarios in the summary-flow.pdf file.

Scenario summary-flow.pdf

"200 OK"

"404 Not found"

4.2.3 Add a Document

Now let's add a document to our project. The highlighted text adds a new document to the project. This

document is defined with the "documentName" and "defines" fields. The "defines" field includes the

"STARTUP" define. This results in generation of the "detailed-flow.pdf" file with both scenarios showing

the interactions enclosed in #ifdef STARTUP and #endif

project.scn.json http.FDL

{

 "scenarios": [

 {

 "modelPath": "model/http.FDL",

 "scenarioName": "200 OK",

 "defines": ["SUCCESSFUL"]

 },

 {

 "modelPath": "model/http.FDL",

 "scenarioName": "404 Not found"

 }

],

 "documents": [

eternal: client, server

feature "Web Browsing" {

#ifdef STARTUP

 SYN: client -> server

 "SYN+ACK": client <- server

 ACK: client -> server

#endif

 "HTTP Request": client -> server

#ifdef SUCCESSFUL

EventStudio System Designer 8

Page | 39

 {

 "documentName": "summary-flow"

 },

 {

 "documentName": "detailed-flow",

 "defines": ["STARTUP"]

 }

]

}

 "200 OK": client <- server

#else

 "404 Not Found": client <-

server

#endif

}

EventStudio now generates two documents ("summary-flow.pdf" and "detailed-flow.pdf").

Scenario summary-flow.pdf detailed-flow.pdf

"200 OK"

"404 Not found"

Learn more about the project files in the Scenarios and Documents chapter.

4.3 Add a New FDL File to the Project

1. Select the model directory and then click the new document icon. Alternatively, right-click on the

model folder and select new file.

2. Create new.FDL.

1. Click the new file menu.

2. Select the FDL file name.

EventStudio System Designer 8

Page | 40

3. Type arch to select a 1-tier architecture snippet.

4. Use tabs to replace obj1 and obj2 in the snippet. Multiple occurrences of obj1 and obj2 are

automatically substituted.

5. Now open the project file.

Type arch and select 1-tier snippet.

EventStudio System Designer 8

Page | 41

6. Add the new scenario to the file. The scenarios are added to the document in the order defined

here.

7. Click the Build button.

4.4 Invoke EventStudio from Command Line

4.4.1 Add EventStudio to the Path

Open project file

Build

Build

EventStudio System Designer 8

Page | 42

Windows

1. Navigate to the %USERPROFILE%\.vscode\extensions directory.

2. Change to the EventStudio extension directory.

a. The directory depends upon the version of the EventStudio extension. For example, the

path for the 8.0.2 release, the complete path is:
%USERPROFILE%\.vscode\extensions\eventhelix.eventstudio-8.0.2

3. Add this directory to the search path.

macOS

1. Navigate to the ~/.vscode/extensions/eventhelix.eventstudio-8.0.2

directory.

2. Change to the EventStudio extension directory.

a. The directory depends upon the version of the EventStudio extension. For example, the

path for the 8.0.2 release, the complete path is:
~/.vscode/extensions/eventhelix.eventstudio-8.0.2

3. Add this directory to the search path.

4.4.2 Open the Integrated Terminal in Visual Studio Code

1. Open the project in Visual Studio Code.

2. Open the integrated terminal with the Ctrl+` (i.e. Ctrl+backtick).

3. Open the command window and type: evstudio -h

Command

line help

Enter any shell

command

EventStudio System Designer 8

Page | 43

4. Now enter evstudio build to generate documents.

5. Explore the other commands:

a. review: Only review the FDL model in the project. No documents are generated.

b. preview: Generate a preview document. You can limit the review to a single FDL file

using the limitTo switch.

c. convert: Convert EventStudio 6 projects to the new release.

4.5 Insert FDL Snippets

You can insert FDL code snippets to define commonly occurring design patterns. This involves:

1. Typing the snippet prefix in the editor (msg snippet is show below).

2. Select the snippet and fill in the blanks.

3. Explore the following built in snippet prefixes:

Snippet Prefix Description

arch Choose single tier to 5-tier architecture snippets

msg Choose between different flavors of message snippets

invoke Method invoke and return snippets

create Create-delete objects

Activate the message

snippets by typing

msg and then

selecting from the

drop down menu.

Extended snippet help

can be enabled by

Ctrl+Space.

EventStudio System Designer 8

Page | 44

action Action snippets

timer Timer snippets

resource Resource snippets

state State transition snippets

sequence Sequence group snippets

4.6 Change EventStudio Configuration

1. Select the Settings menu from the EventStudio sidebar.

2. You can choose between user level and workspace (i.e. project) level settings.

4.7 Export to Microsoft Word

Windows only.

1. Create a Microsoft Word Picture (EMF) as shown in Add a Document.

a. Just set the "documentFormat" to "emf" (as shown in the following figure).

2. EventStudio

specific settings.

3. Set the settings at

user or Workspace

(project) level.

1. EventStudio view.

EventStudio System Designer 8

Page | 45

2. Open the Microsoft Word document where you wish to insert the document.

3. Position the cursor in the document where you want to insert the "Word Picture EMF" files.

4. Follow the instructions specified along with the screenshot:

Notes:

1. The document in "Word Picture EMF" graphics format is generated as a directory of the name

same as that of the document in the path where the scenario project is present.

2. The document consists of a set of files in this directory. Each page of the document is

represented by a file. The file naming is: <scenario number>_<page within scenario>_<scenario

name>.emf.

Example

Consider a Scenario Project in the directory "C:\MyDoc\ " with "Docking" and "Undocking" scenarios. The

document "Spaceport Collaboration Diagram Word" is generated in the directory

"C:\MyDoc\documents\Spaceport Collaboration Diagram Word\" where the files are sequentially

2. Select all the

documents using Ctrl+A.

3. Click Insert and Link.

• With this option, Word inserts a

copy of the document and

maintains a link to the original

file. Changes to the file are

automatically reflected in the

document.

• You can send a copy of the

document to other users,

without bundling the EMF files.

1. Click on the Picture

menu in the Insert tab.

EventStudio System Designer 8

Page | 46

defined as 0001_0001_Docking.emf, 0002_0001_Docking.emf, 0002_0001_Undocking.emf and so

on.

4.8 Convert EventStudio 6 Scenario Projects to JSON

Windows only.

Use the EventStudio command-line to convert.

For example, the following command converts the EventStudio 6 project "Message sequence

charts.scn" and stores the reorganized project into a different directory (recommended).

evstudio convert "Message sequence charts.scn" --reorganize "..\MSC7"

If you wish to convert without changing the FDL file paths, omit the reorganize switch. For example:

evstudio convert "Message sequence charts.scn"

EventStudio System Designer 8

Page | 47

5 FDL REFERENCE
This chapter provides a comprehensive reference to FDL. The following topics are covered:

• Architecture and Feature Definition

• Multiple Scenario Modeling

• Object Interactions

• Object Creation and Deletion

• Timers

• Resource Allocations

• State Transitions

• Remarks

• Preprocessor

• Styles, Themes and Document Layout

5.1 Architecture and Feature Definition

5.1.1 System, Subsystem, Module and Component declaration

EventStudio lets you represent hierarchical architectures like the one shown below.

The FDL representation of the architecture is shown below.

system: Earth
subsystem: "North America" in Earth, Asia in Earth
module: "United States" in "North America”
module: India in Asia
component: California in "United States”
component: Rajasthan in India
eternal: "Los Angeles" in California, "San Francisco" in California
eternal: Jaipur in Rajasthan

Tier 1: Eternal and
Dynamic Objects

Tier 2: Components

Tier 3: Modules

Tier 4: Subsystems

Tier 5: Systems Earth

North
America

United
States

California

Los
Angeles

San
Fransico

Asia

India

Rajasthan

Jaipur

EventStudio System Designer 8

Page | 48

You can choose to model a complex system as a 5-tier architecture. At the other end of the spectrum,

you may just use a single tier architecture.

The architecture definition options are shown in the following table:

 5 Tier 4 Tier 3 Tier 2 Tier Single Tier

system Present

subsystem Present Present

module Present Present Present

component Present Present Present Present

eternal or dynamic object Present Present Present Present Present

5.1.2 Eternal Object declaration

This statement is used to declare an object that is created at system startup and exists throughout the

life of the system. An eternal object declaration statement must be defined before the feature block.

5.1.2.1 EXAMPLES

eternal: call_mgr

An eternal object call_mgr is declared at the topmost level in two-tier decomposition architecture.

eternal: call_mgr in frontend

An eternal object call_mgr is declared inside the frontend component.

eternal: call_mgr1:call_mgr in frontend1
eternal: call_mgr2:call_mgr in frontend2

Two instances of eternal objects of the type call_mgr. If you generated an interface sequence diagram

for call_mgr, it will include interactions involving call_mgr1 and call_mgr2.

eternal: "I-CSCF" in IMS, "S-CSCF" in IMS

Eternal objects are declared as strings.

eternal: [object_style] sip_call_manager in server
object_style is applied to the sip_call_manager (For details refer section 5.13.1).

5.1.3 Dynamic Object declaration

This statement is used to declare an object that will be dynamically created (5.5.1) and deleted (5.5.2).

5.1.3.1 EXAMPLES

EventStudio System Designer 8

Page | 49

dynamic: call in frontend
feature "Call Setup" {
 msg1: phone -> call_mgr
 call_mgr creates call
 dialtone: call -> phone
 ...
 call_over: call -> call_mgr
 call_mgr deletes call
}

Here, a dynamic object call is declared inside the frontend component. The Call Setup feature shows

that the call_mgr object creates call object. Once the call is over, call_mgr deletes the call object.

dynamic: call1:call in frontend1, call2:call in frontend2

Two instances of dynamic objects of the same type.

dynamic: "Originating Call" in "SIP Server"
dynamic: "Terminating Call" in "SIP Server"

Dynamic objects declared as strings.

dynamic: ISUPCall | SIPCall in "Signaling Gateway"

This is an example of two dynamic objects sharing the same axis. Only one of these objects can be

active at a time. Organizing dynamic objects this way is useful when different scenarios instantiate

different objects and dedicating a separate instance axis for each object would lead to space wastage.

dynamic: [call_style] sip_call in client
dynamic: [call_style] h323_call in server

call_style is applied to the sip_call_manager (For details refer section 5.13.1).

5.1.4 Type declaration

FDL allows defining types for a system, subsystem, module, component, eternal object or dynamic

object. This is used to specify that two or more different entities are really instances of the same entity

type. A type declaration statement can be put only inside the FDL declaration block at the beginning of

the FDL file. There can be no type declaration statement inside the feature {} block in the FDL file.

It may be noted that defining the types will have no visual impact on the PDF Sequence Diagrams. The

main difference can be seen in the definition of Unit Test Procedures and Interface documents. If the

user specifies the type for generating a document, EventStudio will include interfaces of all instances of

the given type.

5.1.4.1 EXAMPLES

module: calling_party:customer, called_party:customer

component: "P-CSCF 1":"P-CSCF" in IMS, "P-CSCF 2":"P-CSCF" in IMS

eternal: call_mgr1:call_mgr in frontend1
eternal: call_mgr2:call_mgr in frontend2

dynamic: call1:call in frontend1, call2:call in frontend2

5.1.5 Environment interactions

EventStudio System Designer 8

Page | 50

FDL allows the user to depict message interactions with the external world. This can be done by sending

messages to the left environment (env_l) or right environment (env_r). Environment interactions can be

very useful in clearly spelling out what is external to the system being designed.

env_l and env_r are declared internally, thus there is no declaration statement for environments. env_l

and env_r can be used in the message statement as source or destination of messages.

5.1.5.1 EXAMPLES
pick_up_phone: env_l -> phone

Here, a pick_up_phone message is received from the left environment. This will be depicted as an arrow

from the left edge of the document to the axis corresponding to phone.

call_setup_request: core -> env_r

Core sends a message to the right environment. This will be depicted as an arrow from the core axis to

the right environment.

5.1.6 Feature statement

This statement encloses all the message interactions for a feature. The feature {} block follows the

declarations in FDL file. A title for the feature should be specified in the feature declaration. An FDL file

defines feature interactions for one feature. Hence there can be one feature {} block in an FDL file.

A theme may be associated with a feature {} block. A theme specifies the layout options and the fonts.

The feature title that is specified in the statement is displayed at the top, along the complete width of

the output page of the Sequence Diagram.

EventStudio performs various checks on the feature {} block. It warns in the following cases:

- Timers have been left running at feature end.

- Dynamic object is not deleted before the feature ends.

- Resources have not been deallocated at feature end.

5.1.6.1 EXAMPLES
feature "Call Setup" {
 msg1: phone -> call_mgr
 msg2: call_mgr -> core
}

This feature {} block encloses all the feature interactions for the call setup feature.

{MyTheme} feature "Call Setup" {
 msg1: phone -> call_mgr
 msg2: call_mgr -> core
}

Here a feature {} block is shown with a theme specification for the feature. The theme specifies the

layout options and the font sizes.

EventStudio System Designer 8

Page | 51

5.2 Multiple Scenario Modeling

Systems engineering involves modeling a myriad of alternative and failure scenarios for a feature. With

FDL, multiple scenarios can be modeled by just specifying how the alternative and failure scenarios

differ from the base scenarios. C-style #ifdef and #ifndef statements should be used to identify how the

alternative and error scenarios deviate from the core scenarios.

project.scn.json http.FDL

{ "scenarios": [

 {

 "modelPath": "model/http.FDL",

 "scenarioName": "200 OK",

 "defines": ["SUCCESSFUL"]

 },

 {

 "modelPath": "model/http.FDL",

 "scenarioName": "404 Not found"

 }],

 "documents": [

 {

 "documentName": "summary-flow"

 },

 {

 "documentName": "detailed-flow",

 "defines": ["STARTUP"]

 }]}

eternal: client, server

feature "Web Browsing" {

#ifdef STARTUP

 SYN: client -> server

 "SYN+ACK": client <- server

 ACK: client -> server

#endif

 "HTTP Request": client -> server

#ifdef SUCCESSFUL

 "200 OK": client <- server

#else

 "404 Not Found": client <-

server

#endif

}

The generated diagrams and the associated scenarios show the rendering of scenario specific and

document specific defines.

Scenario summary-flow.pdf detailed-flow.pdf

"200 OK"

"404 Not found"

EventStudio System Designer 8

Page | 52

5.3 Messages

5.3.1 Message statement

This statement is used to represent message exchanges between the source and destination. The

source and destination can be any of the following:

• Component (i.e. component without any other objects inside it)

• Eternal object

• Dynamic object

• Left Environment (env_l)

• Right Environment (env_r)

The message-statement also allows definition of message parameters of two forms:

• Message field

• Message field with value

The message name may be in identifier format (CallRequest) or string format ("Call Request"). The

message field and value can be in identifier or string format.

Messages will be represented as arrows from source to destination. In Sequence Diagrams, message

name is printed on the top of the arrow.

5.3.1.1 ADVANCED USES

• Bidirectional message interactions can be succinctly represented using the bidirectional form of the

message statement. Bidirectional messages are represented with double headed arrows.

• Important messages may be represented using weighted arrows. These arrows are drawn with a

thicker arrow.

• Self-messages are specified by using the same entity as source and destination. “Self-messages”

are represented with arrows that return to the originating axis.

• Message chains can be used to depict a sequence of message interactions.

• Lost messages are represented with an X next to a partial message arrow.

5.3.1.2 EXAMPLES

Message1: src_proc -> dest_proc

Message1 is being sent from src_proc to dest_proc component

"SYN": client -> server
"SYN+ACK": client <- server
"ACK": client -> server

The message sequence shown above demonstrates the use of the reverse arrow.

EventStudio System Designer 8

Page | 53

Origination(subscriber_id, mode=NORMAL): v5_mgr -> dtmf_proc

Origination message with parameters subscriber_id and mode is sent from v5_mgr object to dtmf_proc

component. Here the mode variable has been given a value of NORMAL.

Origination(subscriber_id, mode=NORMAL): dtmf_proc <- v5_mgr

This example uses a reverse arrow.

Setup(call_id,
 phone_num,
 priority=HIGH,
 latency=LOW): v5_mgr -> env_r

Here is an example of a message statement with parameters spread over multiple lines. The Setup

message is being sent from the v5_mgr to the right environment. The following parameters are being

sent in the message:

• call_id

• phone_num

• priority with a value of HIGH

• latency with a value of LOW

"Interview Employee": "Human Resources" -> Department

A string message name and source have been used in this example.

HTTP_Get(url="https://www.EventHelix.com"): WebBrowser -> Internet

A string parameter value is used in this example to represent the URL value.

"Purchase Order" ("Order Number" = "01-033-56"): User -> Server

In this example, the message name, parameter type and value are all strings.

VoicePath: Caller <-> Called

A bidirectional voice path has been established between the caller and the called subscribers.

VoicePath: Caller <=> Called

A bidirectional voice path has been established between the caller and the called subscribers. This time

represented with a thick arrow.

"RTP Stream": Server => Client

Important message interaction shown with a weighted arrow.

"End of Dialing": CallHandler -> CallHandler

The call handler schedules an internal “End of Dialing” message.

[sip_style] "Invite": SIP_Phone -> SIP_Proxy

A style, titled sip_style, is assigned to the "Invite" message. The message is formatted per the style

specification.

PathSetup: src -> dst <http://www.messagedef.com/PathSetup.html>

A message with a hyperlink specification is shown here. Clicking on the message name will open a

browser window for the specified URL.

EventStudio System Designer 8

Page | 54

"RR CHANNEL REQUEST": Mobile-rr -> BSS-rr

A message shown here with source and destination tagging. The tags can be used to denote protocol

stack layers exchanging the message. The representation of the tags is shown below:

chain {
 "Call Setup": UT -> BTS
 "Call Setup": BTS -> BSC
 "Initial Call Message": BSC -> MSC
}

A chain statement enclosing messages is shown above. The chain messages are drawn in a single line.

TCPSegment: client ->X server

A TCP segment sent from the Client to the Server has been lost

CourierPackage: Courier =>X Customer

A courier has lost a package (shown with a bold arrow).

TCPSegment (parameter1, parameter2): server X<- client

This example uses the reverse lost message arrow.

CourierPackage(a_parameter, b_parameter): Customer X<= Courier

This example depicts bold reverse lost message arrow.

5.3.2 Chain statement

The Chain statement allows you to define a message chain to model a chain of messages that are

triggered in a sequence. EventStudio attempts to draw all messages in a message in a single line.

Multiple Message statements may be enclosed between the chain {} blocks.

5.3.2.1 EXAMPLE

chain {
 [rstyle] msg: a -> b
 msg2(par1="one", par2): b -> c
 [talk] conversation: c <-> d
}

The chain statement shown above will be drawn in a single line if the message arrows do not result in

an overlap. If the message arrows result in an overlap, the message arrows are drawn in different lines.

msg(par1="one", par2): a -> b -> c

The forward cascaded message statement shown above is a special case of chain statement where

message opcode and parameters of chain elements is same and destination of one chain element is

the source of next chain element. This type of chain statement will be drawn in a single line if the

message arrows do not result in an overlap. If the message arrows result in an overlap, the message

arrows are drawn in different lines.

EventStudio System Designer 8

Page | 55

chain {
 "Message 1": A-rtp -> B-rtp
 "Message 2": B-rtp -> C-rtcp
}

A message chain shown with tags.

More examples:

msg(par1="one", par2): a => b => c
msg(par1="one", par2): c <- b <- a
msg(par1="one", par2): c <= b <= b <= a
msg(par1="one", par2): a <-> b <-> c
msg(par1="one", par2): a <=> b <=> c

5.3.3 Multicast statement

This statement is used to represent message sent from a given source to more than one destination at

the same time. The source and destination can be any of the following:

Component (i.e. component without any other objects inside it)

• Eternal object

• Dynamic object

The multicast-statement also allows definition of message parameters of two forms:

• Message field

• Message field with value

The message name may be in identifier format (CallRequest) or string format ("Call Request"). The

message field and value can be in identifier or string format.

A multicast statement can be put only inside the feature {} block in the FDL file.

Messages will be represented as arrows from source to destination. In Sequence Diagrams, message

name is printed on the top of the arrow.

5.3.3.1 EXAMPLES

src_proc multicasts Message1 to dest_proc1, dest_proc2

Message1 is being sent from src_proc to dest_proc1 and dest_proc2 components

v5_mgr multicasts Orig(subscriber_id, mode=NORMAL) to dtmf_proc, call_mgr

Origination message with parameters subscriber_id and mode is sent from v5_mgr object to dtmf_proc

component and call_mgr object. Here the mode variable has been given a value of NORMAL.

WebTaxiServer multicasts "Taxi Request" to Taxi1, Taxi2

A string message name has been used in this example.

EventStudio System Designer 8

Page | 56

User multicasts "Purchase Order" ("01-033-56") to Server1, Server2
In this example, the message name, parameter type and value are all strings.

BaseStation multicasts "System Information" to UE1-bcch, UE2-bcch
Tags are used to identify the BCCH cannel in the multicast.

5.4 Object Interactions

5.4.1 Invokes and Returns statements

The "Invokes" statement is used to model a method invocation on an object. The return from a method

is modeled by the "returns" statement. You can specify parameters for the "invokes" as well as "returns"

statements. The parameter specification syntax is like the message parameter syntax.

Invokes and returns statements may be nested.

The method invocation is represented with an arrow like the message statement. Once a method is

invoked, the axis is represented as a thin rectangular bar that lasts until method return.

The rectangular bar is not shown in the system interaction, subsystem interaction, module interaction

and component interaction diagrams.

5.4.1.1 EXAMPLES
CallManager invokes Call.HandleInvite(msg="My Invite", "bool send")
 Call action "Verify the Invite Message"
 Call invokes MessageHandler.Send(SIP_OK)
 MessageHandler.Send returns (true)
 Call.HandleInvite returns

A nested method invocation along with returns statements is shown above.

Call invokes Call.ProcessMessage(msg="My Invite", "bool send")
 Call.ProcessMessage returns

An object invokes its own method.

5.5 Object Creation and Deletion

5.5.1 Create statement

This statement is used to create a dynamic object. The object that creates the dynamic object may or

may not be specified. A dynamic object create statement can be put only inside the feature {} block in

the FDL file. Use a dynamic declaration statement to declare a dynamic object. Use the delete

statement when a dynamic object needs to be deleted. A dynamic object created in a feature must be

deleted before the feature ends.

The output corresponding to a create statement is shown as a dotted arrow from the creator entity to

the created entity. Create is printed on the top of the arrow. And, the instance axis for the dynamic

object starts just from the create arrow.

EventStudio System Designer 8

Page | 57

5.5.1.1 EXAMPLES
dynamic: call in frontend
feature "Call Setup" {
 msg1: phone -> call_mgr
 call_mgr creates call
 dialtone: call -> phone
 ...
 call_over: call -> call_mgr
 call_mgr deletes call
}

Here, a dynamic object call is declared inside the frontend component. The Call Setup feature shows

that the call_mgr object creates call object. Once the call is over, call_mgr deletes the call object

dynamic: call in frontend
feature "Call Setup" {
 msg1: phone -> call_mgr
 call_mgr creates(call_id, phone_no) call
 dialtone: call -> phone
 ...
 call_over: call -> call_mgr
 call_mgr deletes call
}

A create statement with parameters is shown here. The output shows the parameter list below the

create opcode in the sequence diagram, component interaction diagram, module interaction diagram,

subsystem interaction diagram or system interaction diagram.

dynamic: HSS | MRFC in "IMS CN"
feature "IMS Call Setup" {
 create HSS
 "I-CSCF", HSS action "Identify S-CSCF"
 delete HSS

 create MRFC
 "S-CSCF", MRFC action "Setup Conference"
 delete MRFC
}

Anonymous create and delete are used here to share a single axis between HSS and MRFC.

Note: When a lightweight header is used, the create box for the dynamic object in the sequence

diagram is drawn only when the dynamic object is created. If image based light weight header is

selected, the dynamic object image is drawn only when the dynamic object is created. This applies to

regular dynamic and reusable dynamic objects.

5.5.2 Delete statement

This statement is used to delete a dynamic object. The object that deletes the dynamic object may or

may not be specified. The delete statement also allows a self-delete. A dynamic object delete statement

can be put only inside the feature {} block in the FDL file. Use a dynamic declaration statement to

declare a dynamic object. Use the create statement when a dynamic object needs to be created. A

dynamic object created in a feature must be deleted before the feature ends.

The output corresponding to a delete statement is shown as a big X mark. An arrow from the deleting

object to the deleted object precedes the X mark if it is not the case of self-delete.

EventStudio System Designer 8

Page | 58

5.5.2.1 EXAMPLES
call_over: call -> call_mgr
call_mgr deletes call

Here, on receipt of the call_over message from call object, the call_mgr object deletes the call object.

release_call: rout_mgr -> call
call deletes call

Here, on receipt of the release_call message from the rout_mgr, the call object deletes itself.

dynamic: HSS | MRFC in "IMS CN"
feature "IMS Call Setup" {
 create HSS
 "I-CSCF", HSS action "Identify S-CSCF"
 delete HSS

 create MRFC
 "S-CSCF", MRFC action "Setup Conference"
 delete MRFC
}

Anonymous create and delete are used here to share a single axis between HSS and MRFC.

5.6 Timers

5.6.1 Timer Start (One Shot and Periodic) statement

This statement is used for starting a timer by an eternal or dynamic object. The timer name and the

object starting the timer must be specified.

Use the timer stop statement for stopping a timer. Use timer timeout statement for showing the timeout

for a timer. EventStudio issues a warning if it finds that a timer has been left running at feature end. For

dynamic objects, EventStudio issues a warning if timers are left running at object deletion.

EventStudio supports one time and periodic timers. Only one timeout is permitted for "one time" timers.

Periodic timers are allowed multiple timeouts.

5.6.1.1 EXAMPLES
feature "Call Setup" {
 offhook: phone -> call_mgr
 call_mgr creates call
 call starts await_first_digit_timer
 digits: phone -> call
 call stops await_first_digit_timer
 ...
}

Here, the call object starts the await_first_digit_timer (one time) timer to await first digit dialed by the

subscriber.

feature "Call Setup" {
 offhook: phone -> call_mgr
 call_mgr creates call
 call starts periodic send_billing_pulse_timer
 ...
 timeout send_billing_pulse_timer
 ...
 timeout send_billing_pulse_timer
 ...
 timeout send_billing_pulse_timer

EventStudio System Designer 8

Page | 59

}

The call object starts the send_billing_pulse_timer periodic timer. Multiple timeouts are depicted for the

timer.

5.6.2 Timer Restart statement

This statement is used for restarting an already existing timer started by any eternal or dynamic

component. The timer name and the object stopping the timer must be specified. A timer restart

statement can be put only inside the feature {} block in the FDL file.

5.6.2.1 EXAMPLE
feature "Call Setup" {
 offhook: phone -> call_mgr
 call_mgr creates call
 call starts await_digit_timer
 digits: phone -> call
 call restarts await_digit_timer
 ...
 timeout await_digit_timer
}

Here, the await_digit_timer has been restarted on receipt of digits from the phone.

5.6.3 Timer Stop statement

This statement is used for stopping an existing timer started by an eternal or dynamic object.

EventStudio issues a warning if it finds that a timer has been left running at feature end. For dynamic

objects, EventStudio issues a warning if timers are left running at object deletion.

5.6.3.1 EXAMPLES
feature "Call Setup" {
 offhook: phone -> call_mgr
 call_mgr creates call
 call starts await_first_digit_timer
 digits: phone -> call
 call stops await_first_digit_timer
 ...
}

The call object stops the await_first_digit_timer timer on receipt of the first digit dialed by the

subscriber.

5.6.4 Timeout statement

This statement is used to show the timeout of an existing timer started by an eternal or dynamic object.

Use the timer start statement for starting a timer.

5.6.4.1 EXAMPLES
feature "Call Setup" {
 offhook: phone -> call_mgr
 call_mgr creates call
 call starts await_first_digit_timer
 |* The calling subscriber does not dial any digit *|
 timeout await_first_digit_timer
 ...
}

EventStudio System Designer 8

Page | 60

Here, the calling subscriber does not dial any digit and the await_first_digit_timer timeout happens.

5.6.5 Time Passage statement

Passage of time can be depicted with three dots in the FDL. This is shown as dotted axis.

A starts Timer
...
timeout Timer

5.7 Actions

5.7.1 Action statement

This statement is used to model a specific action taken by a single or a group of entities.

The statement takes two forms:

• Single: Action involving a single object, component, module, subsystem or system is specified.

• Multiple: Action involving multiple objects, components, modules, subsystems or systems is

specified.

The output of an action statement is shown as a box with the action indicated inside it. The action

statement font, color and line width may be changed by prefixing it with a style statement.

The "action" statement also supports hyperlinks in PDF based sequence diagrams. The hyperlinks may

be used to link to files on the Internet or your local drive.

5.7.1.1 EXAMPLES
call_mgr action "Obtain subscriber profile"

The call_mgr object is shown to perform the action of obtaining the subscriber profile.

audit action "Check data consistency"

An audit object is shown to perform the action of checking data consistency.

[act_style] client, server action "Establish TCP Connection"

Client and the server take a joint action “Establish TCP Connection”. The statement also associates a

style with the action statement. The style specifies the color, font, line width etc. for this action.

bank, broker, customer action "Close the Loan"

The bank, the broker and the customer work together to close the loan.

a, b action "SIP Call" <http://rfc.net/rfc3261.html>

Here the action box is also a hyper link pointing to the SIP RFC.

bsc1, bsc2 action "Handover" <file://c:\Doc\handover_diagram.pdf>

The above statement links to a sequence diagram describing the handover in detail.

EventStudio System Designer 8

Page | 61

system: Earth
subsystem: "North America" in Earth, Asia in Earth
module: "United States" in "North America", Canada in "North America"
module: India in Asia
component: California in "United States", Nevada in "United States"
component: Quebec in Canada, Rajasthan in India
eternal: "Los Angeles" in California, "San Francisco" in California
eternal: "Las Vegas" in Nevada
eternal: Montreal in Quebec, Jaipur in Rajasthan

feature "Bid for Events" {
 /* Component level action:
 - Represented by a box covering Los Angeles, San Francisco and
 Las Vegas axes.
 - Included in component and lower level interaction diagram. */
 California, Nevada action "West Coast Bid for Olympics"

 /* System level action:
 - Represented by a box covering all objects under Earth.
 - Included in system level and lower interaction diagrams. */
 Earth action "Earth Summit"
}

5.7.2 Action Begin statement

This statement is used to model an action started by a single entity or a group of entities.

The statement takes the following forms:

• Single: Action involving a single object, component, module, subsystem or system is specified.

• Multiple: Action involving multiple objects, components, modules, subsystems or systems is

specified.

The action statement font, color and line width may be changed by prefixing it with a style statement.

The "action begin" statement also supports hyperlinks in PDF sequence diagrams. The hyperlinks may

be used to link to files on the Internet or your local drive.

5.7.2.1 EXAMPLES
call begins action "Feeding Ring back tone"
...
call ends action "Feeding Ring back tone"

Here, the call object is shown to initiate the action of feeding ring back tone. Later, the call object ends

feeding the ring back tone.

[my_style] client, server begin action "Security Association"
...
[my_style] client, server end action "Security Association"

The client and server objects jointly begin the action of setting up a "Security Association". Later, the

client and the server objects jointly end the "Security Association". The statement also associates a style

with the action statement. The style specifies the color, font, line width etc. for this action.

5.7.3 Action End statement

This statement is used to model an action completed by a single entity or a group of entities.

The statement takes the following forms:

EventStudio System Designer 8

Page | 62

• Single: Action involving a single object, component, module, subsystem or system is specified.

• Multiple: Action involving multiple objects, components, modules, subsystems or systems is

specified.

The action is indicated inside the box. The action statement font, color and line width may be changed

by prefixing it with a style statement.

The "action end" statement also supports hyperlinks in PDF sequence diagrams. The hyperlinks may be

used to link to files on the Internet or your local drive.

5.7.3.1 EXAMPLES
call begins action "Feeding Ring back tone"
...
call ends action "Feeding Ring back tone" <http://c:\dialtone.pdf>

The call object is shown to initiate the action of feeding ring back tone. Later, the call object ends

feeding the ring back tone. The "ends action" statement is hyperlinked to a file on the local drive.

[my_style] client, server begin action "Security Association"
...
[my_style] client, server end action "Security Association"

The client and server objects jointly begin the action of setting up a "Security Association". Later, the

client and the server objects jointly end the "Security Association". The statement also associates a style

with the action statement. The style specifies the color, font, line width etc. for this action.

5.8 Resource Allocations

5.8.1 Resource Allocate statement

This statement is used for allocating a resource by a single or a group of entities. The entities allocating

the resource and the resource name must be specified. Use a resource free statement for deallocating

a resource. EventStudio issues a warning when it finds that resources have not been deallocated at

feature end. For dynamic objects, EventStudio issues a warning if the resources allocated by the object

have not been freed before the object deletion.

The output of a resource allocate statement is shown as a box with "allocate" as the title and the

resource name inside it.

The statement takes two forms:

• Single: Resource allocation involving a single object, component, module, subsystem or system

is specified.

• Multiple: Resource allocation involving multiple objects, components, modules, subsystems or

systems is specified.

5.8.1.1 EXAMPLES

call_mgr allocates "Outgoing trunk"

The call manager object allocates an outgoing trunk resource for a call.

call_mgr allocates "Outgoing trunk" <http://c:\referencedoc.pdf>

EventStudio System Designer 8

Page | 63

The resource allocate statement also supports hyperlinks in PDF based sequence diagrams. The

hyperlinks may be used to link to files on the Internet or your local drive.

[my_style] client, server allocate "Encryption Coprocessor"
...
[my_style] client, server free "Encryption Coprocessor"

The client and server objects jointly allocate an "Encryption Coprocessor". Later, the client and the

server objects jointly free the "Encryption Coprocessor". The example also shows a style specification

that can be prefixed to the resource allocate and free statements. The "action end" statement also

supports hyperlinks in PDF sequence diagrams. The hyperlinks may be used to link to files on the

Internet or your local drive.

system: Earth
subsystem: "North America" in Earth, Asia in Earth
module: "United States" in "North America", Canada in "North America"
module: India in Asia
component: California in "United States", Nevada in "United States"
component: Quebec in Canada, Rajasthan in India
eternal: "Los Angeles" in California, "San Francisco" in California
eternal: "Las Vegas" in Nevada
eternal: Montreal in Quebec, Jaipur in Rajasthan

feature "Bid for Events"{
 /* Component level resource allocate:

- Represented by a box with allocate as title and resource name inside it.
The box covers Los Angeles, San Francisco and Las Vegas axes.

 - Included in component and lower level interaction diagram. */
 California, Nevada allocate "Stadium for Olympics in West Coast"

 ...
 California, Nevada free "Stadium for Olympics in West Coast"

 Earth allocates "Earth's Satellite"
 ...
 Earth frees "Earth's Satellite"
}

5.8.2 Resource Free statement

This statement is used for de-allocating a resource by a single or a group of entities. The resource must

have been allocated earlier by the resource allocate statement. The entities deallocating the resource

and the resource name must be specified in the statement. EventStudio issues a warning when it finds

that resources have not been deallocated at feature end. For dynamic objects, EventStudio issues a

warning if the resources allocated by the object have not been freed before the object deletion.

Like resource allocate statement, resource free statement also supports user definable hyperlinks.

The statement takes two forms:

• Single: Resource free involving a single object, component, module, subsystem or system is

specified.

• Multiple: Resource free involving multiple objects, components, modules, subsystems or

systems is specified.

EventStudio System Designer 8

Page | 64

5.8.2.1 EXAMPLES
[my_style] call_mgr frees "Outgoing trunk"

The call manager object frees the outgoing trunk resource allocated earlier for a call. The example also

shows a style specification that can be prefixed to the resource allocate and free statements.

client, server allocate "Encryption Coprocessor"
...
client, server free "Encryption Coprocessor"

The client and server objects jointly allocate an "Encryption Coprocessor". Later, the client and the

server objects jointly free the "Encryption Coprocessor".

system: Earth
subsystem: "North America" in Earth, Asia in Earth
module: "United States" in "North America", Canada in "North America"
module: India in Asia
component: California in "United States", Nevada in "United States"
component: Quebec in Canada, Rajasthan in India
eternal: "Los Angeles" in California, "San Francisco" in California
eternal: "Las Vegas" in Nevada
eternal: Montreal in Quebec, Jaipur in Rajasthan

feature "Bid for Events" {
 California, Nevada allocate "Stadium for Olympics in West Coast"

 ...
 California, Nevada free "Stadium for Olympics in West Coast"

 Earth allocates "Earth's Satellite"
 ...
 /* System level resource free:
 - Represented by a box with title free and resource name inside it
covering all objects under Earth.
 - Included in system level and lower interaction diagrams. */
 Earth frees "Earth's Satellite"
}

5.9 State Transitions

5.9.1 State Change statement

This statement is used to represent state transitions of state machines. State for a single or a group of

entities may be specified. The name of the entities and the name of the state to which transition is

taking place, must be specified. A state change statement can be put only inside the feature {} block in

the FDL file. This statement is used during detailed design phase.

The output of a state change statement is shown as a hexagonal box with the name of state indicated

inside it.

Note: The strings used in this statement should not contain any leading or trailing blanks. Also, words

within the string should not be separated by more than one blank.

 The statement takes two forms:

• Single: State change involving a single object, component, module, subsystem or system is

specified.

EventStudio System Designer 8

Page | 65

• Multiple: State change involving multiple objects, components, modules, subsystems or systems

is specified.

5.9.1.1 EXAMPLES
call state = "Collecting digits"

The state of the call object state machine has been specified to change to collecting digits.

caller, called state = "Conversation"

The caller and called subscribers have jointly entered the "Conversation" state.

[my_style] "car dealership" state = "Awaiting Shipment"

Here a style prefix is used to control the layout of a state statement.

[my_style] customer, banker state = "Loan Closed"

Here a style prefix is used to control the layout of a joint state statement.

California, Nevada state = "Developed"

Here, the state of the California and Nevada state machines has been specified to change to

developed.

5.10 Sequence Groupings

5.10.1 Sequence Block Statement

A sequence block is used to group multiple statements. A sequence block encloses multiple statements

between the sequence {}. Sequences are identified by their title. The title is also displayed in the PDF

bookmarks. Sequence blocks may be nested.

A sequence block can be displayed in two modes, expanded or summarized. A sequence block is

represented as a rectangle around the enclosed statements in the expanded mode. Nested sequences

are represented with nested rectangles. In the summarized mode, the sequence block is represented

as a rectangle with just the title; no interactions within the sequence block are shown.

The real value of the sequence statement is that it lets you control the level of detail in the document by

choosing how to display a sequence. EventStudio supports the following options:

For Sequence expansion option… ...add to document object in project.scn.json
Don't expand "expandSequence": "do-not-expand",

Expand first time only "expandSequence": "expand-first-time-only"

Always expand "expandSequence": "expand-always"

When configured in the “expand-first-time-only”, a sequence block is automatically minimized if the

sequence block has already been included in a previous scenario in the generated diagram. This

feature helps minimize the size of a sequence diagram when many scenarios are included in a single

diagram.

You may use this statement to define:

• A while loop that contains a sequence of statements that are repeated to accomplish a task.

• Additional level of detail that may be abstracted out in a high-level diagram.

5.10.1.1 EXAMPLES

EventStudio System Designer 8

Page | 66

sequence "PDP Context Activation" {
 "PDP Context Activation Request" : UT -> "Core Network"
 "Core Network" action "Establish Quality of Service"
 "PDP Context Activation Response": UT <- "Core Network"
}

The PDP context activation is modeled as a sequence. When expanded, the statements in this

sequence block are rendered inside a rectangle that covers the entities participating in the sequence.

#define GET_DIGIT(_call, _dsp) sequence {"Get Digit";\
 "Request Digit" : _call -> _dsp;\
 "Collected Digit": _call <- _dsp;\
 "More Digits" : _call -> _dsp;\
 |* _call needs more digits. *|;\
 }

Sequence blocks and macros make a good fit. The GET_DIGIT macro contains the "Get Digit" sequence

block.

sequence "Update Database" {
 sequence "Connect to Database"{
 "Courier Agent" action "Locate database"
 "Courier Agent" action "Connect to database"
 }
 "Courier Agent" action "Query the database"
 "Courier Agent" action "Update the database"
 "Backup Entry": "Courier Agent" -> "Backup Database Server"
}

Sequences can be nested as shown here. EventStudio automatically determines the bounding rectangle

for each sequence.

5.10.2 Preconditions Block

Preconditions in use case may be enclosed in a preconditions block. Any statement permitted in a

sequence block may be used in a preconditions block.

preconditions {
 "Courier Agent" state = "Awaiting User Input"
 "Backup Database Server" action "Initialize"
}

5.10.3 Postconditions Block

Post-conditions in use case may be enclosed in a postconditions block. Any statement permitted in a

sequence block may be used in a postconditions block.

postconditions {
 "Courier Agent" state = "Completed user transaction"
 "Backup Database Server" action "Commit Transaction"
}

5.10.4 Loop Block

Looping may be modeled using the loop block. Any statement permitted in a sequence block may be

used in a loop block. Loop blocks may be nested.

loop "Iterate over all rows" {
 loop "Iterate over all columns" {
 GameController invokes ChessBoard.Reset(row, column)
 }
}

EventStudio System Designer 8

Page | 67

5.11 Remarks

5.11.1 Remark statement

This statement allows the user to explain the feature flow. Single line and multi-line remarks are

supported:

• Single line remarks begin with % and end

• Multi-line remarks are enclosed within |* and *|.

The remarks are displayed on the right-side remark column of a sequence diagram. FDL associates

remarks with the previous FDL statement.

5.11.1.1 EXAMPLES
routing_request(digits): call_mgr -> rout_mgr

% Call manager sends the routing request to routing manager.

routing_response(destination_equipment_num): rout_mgr -> call_mgr

routing_request(digits): call_mgr -> rout_mgr

|* Call manager sends the routing request to routing manager.
This message carries the called party digits *|

routing_response(destination_equipment_num): rout_mgr -> call_mgr

5.11.2 Block Remark statement

This statement allows the user to explain the feature flow. FDL supports block remarks enclosed within

|= and =|. FDL supports multi-line block remark statement. Block remarks are used to show milestones

in the execution of a feature. They do not associate with any FDL statement. It should be noted that a

block remark statement could be put only inside feature {} block in the FDL file.

Block remarks are printed along the complete width of the PDF output page. Block remarks support the

following formatting options:

• The text can be divided between paragraphs by simply leaving a blank line between the two

paragraphs.

• Block remark text alignment can be changed in theme declaration (5.13.4). Supported

alignment options are:

o Left Align

o Center Align

o Right Align

o Justify

• Verbatim (Line breaks are preserved)

5.11.2.1 EXAMPLES
routing_response: rout_mgr -> call_mgr
ringing: call_mgr -> trm_call

|= Call routing complete, terminating subscriber being rung, answer
awaited =|

EventStudio System Designer 8

Page | 68

Here, the block remark statement is not associated with any message statement. It indicates the

milestone that the call is in ringing phase.

 |= This scenario describes call setup when the call is originated
 by a mobile subscriber. The document describes a detailed flow
 involving the base station, MSC, HLR and VLR.

 Note that this document corresponds to Release 05.00.77. Changes
 are needed to support the latest release. =|

 channel_setup: SubscriberTerminal -> BaseStation
 AGCH: BaseStation -> SubscriberTerminal

This block remark statement has been used to introduce the scenarios. Note how the text has been

divided into two paragraphs. The output scenario diagrams will preserve the division into paragraphs.

5.11.3 Comment statement

This statement is used to provide programmer documentation. FDL supports standard C-type comments

enclosed within /* and */. FDL supports multi-line comment statement.

EventStudio ignores the standard C-type comments and no output is produced corresponding to the

comment.

5.11.3.1 EXAMPLES
/* V5.2 originating
 call setup */

feature "Call Setup" {
 msg1: phone -> call_mgr
 msg2: call_mgr -> core
}

C-style multi-line comments are supported.

// V5.2 originating call setup

feature "Call Setup" {
 msg1: phone -> call_mgr
 msg2: call_mgr -> core
}

C++ style single line comments are supported. Note that these comments should not be used in macro

definitions.

5.11.4 Heading statement

A large sequence diagram may be subdivided into sections using the heading statement.

• The headings are displayed as a block remark.

• A bookmark to the headings is added in the left pane of a PDF sequence diagram file.

• Message numbering is reset when headings are encountered.

5.11.4.1 EXAMPLES

The syntax for headings is shown in the following example:

heading "Conversation Mode"

5.11.5 Issue statement

EventStudio System Designer 8

Page | 69

This statement is used to indicate unresolved issues that may exist. Another use may be to provide

review comments. An issue statement can be put only inside the feature {} block in the FDL file.

The output corresponding to an issue statement is shown in bold in the right-side "remarks" column.

Also, whenever a review document command is given, all the issue statements in the FDL file are

reported in the output window.

5.11.5.1 EXAMPLE
issue "Call metering procedure to be defined"

5.12 Preprocessor

FDL supports a powerful preprocessor that is like the C preprocessor. All preprocessor directives begin

with a hash (#). The following preprocessor directives are supported:

#include "stdinc.fdl"

Include an FDL file located in the current directory. Paths relative to the

current directory may be used.

#include <theme.fdl>

Include an FDL file from the include path list. They include path list

contains:

• Standard include directory in the EventStudio extension folder.

• Project include directory in the project directory.
#define msg_ack(msg, a, b) "msg": a -> b;\
 |* msg sent from a to b *|;\
 "msg ack": b -> a;\
 |* b acknowledges msg *|;

• Macros may be defined with multiple parameters.

• Multiple statements may be defined in a single line by separating

them with a semicolon (;)

• Macros may be split into multiple lines by using a semicolon-

backslash-enter (;\) pattern.

• Macro parameter substitution is allowed in macro text, strings,

remarks and block remarks.

• Macros may be nested.

#define tone_feed(d, t, a) |= Feed d#t =|;\
 a action "Feeding d t";

Token pasting operator hash (#) allows two macro parameters to be

"pasted" together.

#ifdef LTE_RELEASE_10
#else
#endif

Conditional compilation is supported with the #ifdef-#else-#endif

statement. Symbols controlling the conditional compilation may be defined

EventStudio System Designer 8

Page | 70

using a:

• #define, or

• Symbols defined in the scenario or documents (Chapter 3).

#ifdef LTE_RELEASE_10
#endif

Conditional compilation is supported with the #ifdef--#endif statement.

Symbols controlling the conditional compilation may be defined using a:

• #define, or

• Symbols defined in the scenario or documents (Chapter 3).

5.13 Styles, Themes and Document Layout

5.13.1 Style declaration

Style specifications allow you to specify the formatting for message statements. The style declaration

allows you to specify:

• The color as red, blue and green components.

• Font and font size for the message name text

• Font and font size for the parameter text

• Line pattern for the message arrow

• Line width for the message arrow

The ranges for individual parameters are specified below. Note that not all values need to be specified

in a style declaration. Message defaults are used for unspecified values.

color Specifies the color to be used. The color is specified as a

set of three floating point numbers between 0.0 and 1.0.

The first one denotes the red component, the second

specifies the green component and the last one specifies

the blue component.

• Millions of colors can be defined in terms of the

individual color component values. Color appendix

may be used to select from predefined colors.

bgcolor Specifies the background color. The bgcolor attribute is

supported in:

• Axis boxes in light weight header

• Begin/end action (single and joint)

• Allocate/free resource (single and joint)

• Action (single and joint)

EventStudio System Designer 8

Page | 71

textcolor Specifies the text color in all statements.

Color appendix may be used to select from predefined

colors.

paramcolor Specifies the parameter color in message and object

interaction statements.

Color appendix may be used to select from predefined

colors.

font Specifies the font of the message name. The following

font strings are supported.

• "Arial"
• "Arial Narrow"
• "Courier New"
• "Times New Roman"
• "Arial-Bold"
• "Arial Narrow-Bold"
• "Courier New-Bold"
• "Times New Roman-Bold"

fontsize Specifies the size of the message name font in points.

linewidth Specifies the width of the message arrow in points.

linepattern Selects the line pattern for the message arrow. The

options are:

• "---" (Normal line)

• "- -" (Dashed line)

• "..." (Dotted line)

paramfont Specifies the font for message parameters. The font

strings are same as the message name font specification.

paramfontsize Specifies the size of the message parameter font in

points.

image Windows only

Specifies a JPEG image associated with the style. The image specification is

used when styles are applied to object, component and module declarations.

The image specified in the style is used in the column heading if

sequenceDiagramHeader attribute in the active theme is set to "single-

tier-light-weight-with-images". The image selection in the header is

based on the following rules:

Eternal/Dynamic Component Module Images Images Drawn in

EventStudio System Designer 8

Page | 72

Object Images Images the Header

At least one

eternal or

dynamic object

uses a style with

image.

N/A N/A The

eternal/dynamic

objects that have

associated

images are

drawn with the

image.

No eternal or

dynamic object

has a style with

an image.

At least one

parent

component has a

style with an

image.

N/A Component

image is used.

The image is

centered

between all

eternal and

dynamic objects

within the

component.

No eternal or

dynamic object

has a style with

an image.

No component

has a style with

an image.

At least one

module has a

style with an

image.

Module level

images are used.

The images are

centered

between all

entities

contained in a

module.

match Specifies a regular expression that is used to automatically apply a style to

statements that match the regular expression.

When a match attribute is present in a style, the style gets automatically gets

applied to statements that match the specified regular expression.

For details about regular expressions, refer to the appendix on Regular

Expression

5.13.1.1 EXAMPLE
style sip: color="1.0,0.0,0.0", font="Times New Roman-Bold", fontsize="15",
 linewidth="4", linepattern="- -", paramfont="Courier New", paramfontsize="4"
style server: color="0.0,1.0,0.0", font="Times New Roman-Bold", image="server.jpg"
style mobile: color="0.0,0.0,1.0", font="Times New Roman-Bold", image="mobile.jpg"

module: m
component: p in m
eternal: [mobile] e in p, [server] f in p
style udp_tag_style: color=RED, bgcolor=ROYALBLUE, font="Arial Narrow"

feature "Testing" {
 [sip] invite(caller, called): e-udp -> f-udp
 two_way_path: e <-> f

EventStudio System Designer 8

Page | 73

}

In the above example, we have explicitly applied the style that we want to apply to a statement.

EventStudio supports two ways to implicitly specify the styles:

• Default Styles

• Regular Expression Style Filters

The above example also illustrates the styling as applied to

Message Tagging. EventStudio applies the udp_tag_style to the definition in the invite message.

5.13.2 Default Styles

Specifying a style with every statement can become tedious. EventStudio allows you to specify the

default style to be used when no style has been specified.

Simply define styles with the following names. EventStudio will automatically apply these styles to the

appropriate statements and declarations. (Note that an explicit style specification will override the

default style specification.)

Default Style Name Application

default_invokes_style Default style for invokes statements

default_returns_style Default style of a return from an

invokes-statement.

default_message_style Default style for unidirectional and

bidirectional message interactions.

default_cascaded_message_style Default style for cascaded messages.

If this style is specified, it applies to

statements of the form:

• Msg: a -> b -> c

• Msg: a <-b <- c

default_tag_style Default style for message tags.

default_multicast_style Default style for multicast.

default_create_style Default style for object creation

statement.

default_delete_style Default style for object deletion

statement.

default_remark_style Default style for remarks.

default_block_remark_style Default style for block remarks.

EventStudio System Designer 8

Page | 74

default_timer_style Default style for timer operations.

default_state_style Default style for state transitions.

default_action_style Default style for:

• action

• Begin action

• End action

default_allocate_style Default style for resource allocation

statement.

default_free_style Default style for resource free

statement.

default_system_style Default axis style used in system

level interactions diagrams.

default_subsystem_style Default axis style used in subsystem

level interactions diagrams.

default_module_style Default axis style used in module

level interactions diagrams.

default_component_style Default axis style used in component

level interactions diagrams.

default_eternal_style Default axis style used for eternal

objects.

default_dynamic_style Default axis style used for dynamic

objects.

default_heading_style Default style used in the heading

statement.

5.13.2.1 EXAMPLE

style default_message_style: color="1.0,0.0,0.0", font="Times New Roman-Bold",
 fontsize="15", linewidth="4", linepattern="- -", paramfont="Courier New",
 paramfontsize="4"

module: m
component: p in m
eternal: e in p, f in p

feature "Testing" {
 /* default_message_style is applied to the following message statements. */
 invite(caller, called): e -> f
 two_way_path: e <-> f
}

EventStudio System Designer 8

Page | 75

5.13.3 Regular Expression Style Filters

You can use the match attribute in a style declaration to specify a regular expression. All statements

that match the regular expression will automatically be assigned the style defining the match attribute.

(For more information about regular expression matching, refer to the Regular Expression appendix).

5.13.3.1 EXAMPLE

/* request_style is automatically applied to messages that end with the "Request". */
style request_style: color="1.0,0.0,0.0", font="Times New Roman-Bold",
 fontsize="15", linewidth="1", paramfont="Courier New",
 paramfontsize="4", match="Request$"

/* response_style is automatically applied to messages that end with the "Response". */
style response_style: color="0.0,1.0,0.0", font="Times New Roman-Bold",
 fontsize="15", linewidth="1", linepattern="- -", paramfont="Courier New",
 paramfontsize="4", match="Response$"

module: m
component: p in m
eternal: e in p, f in p

feature "Testing" {
 /* The request_style is applied to the following statement because the message
 opcode matches the style regular expression (i.e. ends with Request).*/
 ResourceAllocationRequest: e -> f

 /* The response_style is applied to the following statement because the message
 opcode matches the style regular expression. (i.e. ends with Response)*/
 ResourceAllocationResponse: e <- f
}

5.13.4 Theme declaration

Themes provide an overall control over the document layout.

• A theme declaration consists of a theme name followed by a sequence of attribute-value pairs.

The attribute-value pairs might be specified across multiple lines. The syntax is:

theme MyTheme: blockRemarkFormatting="right-align",
 paperSize="letter"
theme LeftAlign: blockRemarkFormatting="left-align"

• Initial theme for a statement is specified as a modifier to the feature statement. The syntax is:

{MyTheme} feature "a feature" {

}

• The theme declaration supports the attribute-value pairs shown in the table below.

Attribute Possible values
messageParameterFormatting "multiple-parameters-per-line-center-align"

"single-parameter-per-line-center-align"
"single-parameter-per-line-left-align"

sequenceDiagramHeader "multi-tier-header"
"single-tier-light-weight"
"single-tier-light-weight-with-images"

displayParentInLightWeightHeader "true"
"false"

blockRemarkFormatting "left-align"
"center-align"
"right-align"

EventStudio System Designer 8

Page | 76

"justify"
"verbatim"

assignSequenceNumbersInSequenceDiagrams "true"
"false"

remarkType "callout" – Display remarks as callouts
"column" - Display remarks on the right side

paperSize "letter"
"legal"
"B"
"C"
"A4"
"A3"
"B4"
"<width-in-inch> inch <height-in-inch> inch"

or "<width-in-mm> mm <height-in-mm> mm" 4
minimizeEMFImageWidth "true"

"false"
minimizeEMFImageLength "true"

"false"
sequenceDiagramLayout "auto-choose-between-portrait-landscape"

"landscape-only"
"portrait-only"

stateShape "curved-rectangle"
"hexagon"

pageMarginPDF "small"
"medium"
"large"

pageMarginEMF "small"
"medium"
"large"

headingAndTitleFont "Arial"
"Arial Narrow"
"Courier New"
"Times New Roman"

sequenceDiagramMessageNameFont "Arial"
"Arial Narrow"
"Courier New"
"Times New Roman"

sequenceDiagramMessageNameFontSize "1" to "35"
collaborationDiagramMessageNameFont "Arial"

"Arial Narrow"
"Courier New"
"Times New Roman"

collaborationDiagramMessageNameFontSize "1" to "35"
messageParameterFont "Arial"

"Arial Narrow"
"Courier New"
"Times New Roman"

messageParameterFontSize "1" to "35"
actionBoxFont "Arial"

"Arial Narrow"
"Courier New"
"Times New Roman"

actionBoxFontSize "1" to "35"
remarkFont "Arial"

"Arial Narrow"
"Courier New"
"Times New Roman"

remarkFontSize "1" to "35"
blockRemarkFont "Arial"

"Arial Narrow"
"Courier New"
"Times New Roman"

blockRemarkFontSize "1" to "35"

5.13.5 Page Break statement

This statement inserts a page break in PDF and EMF files. Use this statement whenever you wish to

force the PDF or EMF output to start from a new page.

Note: This statement applies to only PDF and EMF files. It is ignored when generating HTML output.

4 e.g. paperSize="5.5 inch 6.5 inch" or paperSize="60 mm 70 mm".

EventStudio System Designer 8

Page | 77

5.13.5.1 EXAMPLE
...
pagebreak
|= Call Release Processing. =|

Here, a page break has been forced at the beginning of a new phase of a call.

5.13.6 Horizontal and Vertical Separator statements

You can insert a blank column by declaring

a separator. An example is shown in the

figure on the left. Space has been left

between objects B and C.

A blank line can be inserted by just adding

a separator between two statements.

Refer to the example on the left.

eternal: A in p, B in p, separator in p, C in p, D in
p
feature “f”
msg1: A -> B
msg2: A -> B
separator
msg3: A -> C
msg4: A -> D

A B C D

1:msg1

2:msg2

3:msg3

4:msg4

EventStudio System Designer 8

Page | 78

6 REGULAR EXPRESSION

REFERENCE
6.1 Regular Expression Examples

Regular Expression Example Meaning

Docking Matches all messages containing "Docking"

anywhere in the message, e.g. ReadyForDocking,

DockingCommand

^Docking Matches all messages beginning with "Docking",

e.g. DockingCommand, DockingRejected

\cundocking Matches all messages containing "undocking".

Case is ignored in the comparison, e.g.

UndockingAllowed, tawait_undocking_finished

Response$ Matches all messages ending with "Response",

e.g. OrbitDeallocResponse, EndDockingResponse

{Request}|{Response}$ All message ending with "Request" or "Response"

e.g. OrbitRequest, OrbitAllocResponse

^.r Matches all messages with "r" as the second

character, e.g. OrbitAllocRequest,

ProceedForUndocking

^[DU] Matches messages beginning with D or U. e.g.

DockingRequest, UndockingRequest

^[^DU] Matches messages not beginning with D or U. e.g.

ReadyForDocking, OrbitRequest

<Act Matches message containing words beginning

with Act. e.g. ActivateSession, "Demand Action"

ion> Matches messages containing words ending with

ion. e.g. "Demand Action", "Spread ion message"

^.[0-9] Matches messages that have a digit in the second

character. e.g. M1Request, "Q2 Report"

\s Matches message that contain white spaces. e.g.

"Demand Action", "Invoke Call Request"

EventStudio System Designer 8

Page | 79

^{Setup}|{Release}_([a-z]#)_([0-9]#)$ Matches messages that begin with "Setup" or

"Release" and contains lower case word followed

by a number. e.g. Setup_call_53,

Release_message_23, Setup_request_1

^{Error}(_0x[0-9A-F]#)#$ Matches messages starting with Error and

followed by hex numbers. e.g.

Error_0xAA_0x01_0x555, Error_0xAB

6.2 Regular Expression Rules

Pattern Meaning

^ Match the beginning of line

$ Match the end of line

. Match any character

[] Match characters in set

[^] Match characters not in set

? Match previous pattern 0 or 1 times (greedy)

| Match previous or next pattern

@ Match previous pattern 0 or more times (non-greedy)

Match previous pattern 1 or more times (non-greedy)

* Match previous pattern 0 or more times (greedy)

+ Match previous pattern 1 or more times (greedy)

{ } Group characters to form one pattern

() Group and remember

\ Quote next character (only of not a-z)

< Match beginning of a word

> Match end of a word

\x## Match character with ASCII code ## (hex)

EventStudio System Designer 8

Page | 80

\N### Match ASCII code ### (dec)

\o### Match ASCII code

\a Match \a

\r Match 0x13 (cr)

\b Match \b

\t Match 0x09 (tab)

\f Match \f

\v Match \v

\n Match 0x10 (lf)

\e Match escape (^E)

\s Match whitespace (cr/lf/tab/space)

\S Match nonwhitespace (!\S)

\w Match word character

\W Match non-word character

\d Match digit character

\D Match non-digit character

\U Match uppercase

\L Match lowercase

\C Match case sensitively from here on

\c Match case ignore from here on

EventStudio System Designer 8

Page | 81

7 COLOR REFERENCE
BLACK "0.0,0.0,0.0"

DIMGRAY "0.41,0.41,0.41"

DIMGREY "0.41,0.41,0.41"

GRAY "0.50,0.50,0.50"

GREY "0.50,0.50,0.50"

DARKGREY "0.66,0.66,0.66"

DARKGRAY "0.66,0.66,0.66"

SILVER "0.75,0.75,0.75"

LIGHTGRAY "0.83,0.83,0.83"

LIGHTGREY "0.83,0.83,0.83"

GAINSBORO "0.86,0.86,0.86"

WHITESMOKE "0.96,0.96,0.96"

WHITE "1.00,1.00,1.00"

ROSYBROWN "0.74,0.56,0.56"

INDIANRED "0.80,0.36,0.36"

BROWN "0.65,0.16,0.16"

FIREBRICK "0.70,0.13,0.13"

LIGHTCORAL "0.94,0.50,0.50"

MAROON "0.50,0.0,0.0"

DARKRED "0.55,0.0,0.0"

RED "1.00,0.0,0.0"

SNOW "1.00,0.98,0.98"

SALMON "0.98,0.50,0.45"

MISTYROSE "1.00,0.89,0.88"

TOMATO "1.00,0.39,0.28"

DARKSALMON "0.91,0.59,0.48"

ORANGERED "1.00,0.27,0.0"

CORAL "1.00,0.50,0.31"

LIGHTSALMON "1.00,0.63,0.48"

SIENNA "0.63,0.32,0.18"

CHOCOLATE "0.82,0.41,0.12"

SADDLEBROWN "0.55,0.27,0.7"

SEASHELL "1.00,0.96,0.93"

EventStudio System Designer 8

Page | 82

SANDYBROWN "0.96,0.64,0.38"

PEACHPUFF "1.00,0.85,0.73"

PERU "0.80,0.52,0.25"

LINEN "0.98,0.94,0.90"

DARKORANGE "1.00,0.55,0.0"

BISQUE "1.00,0.89,0.77"

TAN "0.82,0.71,0.55"

BURLYWOOD "0.87,0.72,0.53"

ANTIQUEWHITE "0.98,0.92,0.84"

NAVAJOWHITE "1.00,0.87,0.68"

BLANCHEDALMOND "1.00,0.92,0.80"

PAPAYAWHIP "1.00,0.94,0.84"

MOCCASIN "1.00,0.89,0.71"

WHEAT "0.96,0.87,0.70"

OLDLACE "0.99,0.96,0.90"

ORANGE "1.00,0.65,0.0"

FLORALWHITE "1.00,0.98,0.94"

GOLDENROD "0.85,0.65,0.13"

DARKGOLDENROD "0.72,0.53,0.4"

CORNSILK "1.00,0.97,0.86"

GOLD "1.00,0.84,0.0"

KHAKI "0.94,0.90,0.55"

LEMONCHIFFON "1.00,0.98,0.80"

PALEGOLDENROD "0.93,0.91,0.67"

DARKKHAKI "0.74,0.72,0.42"

BEIGE "0.96,0.96,0.86"

LIGHTGOLDENRODYELLOW "0.98,0.98,0.82"

OLIVE "0.50,0.50,0.0"

YELLOW "1.00,1.00,0.0"

LIGHTYELLOW "1.00,1.00,0.88"

IVORY "1.00,1.00,0.94"

OLIVEDRAB "0.42,0.56,0.14"

YELLOWGREEN "0.60,0.80,0.20"

DARKOLIVEGREEN "0.33,0.42,0.18"

GREENYELLOW "0.68,1.00,0.18"

LAWNGREEN "0.49,0.99,0.0"

EventStudio System Designer 8

Page | 83

CHARTREUSE "0.50,1.00,0.0"

DARKSEAGREEN "0.56,0.74,0.56"

FORESTGREEN "0.13,0.55,0.13"

LIMEGREEN "0.20,0.80,0.20"

LIGHTGREEN "0.56,0.93,0.56"

PALEGREEN "0.60,0.98,0.60"

DARKGREEN "0.0,0.39,0.0"

GREEN "0.0,0.50,0.0"

LIME "0.0,1.00,0.0"

HONEYDEW "0.94,1.00,0.94"

SEAGREEN "0.18,0.55,0.34"

MEDIUMSEAGREEN "0.24,0.70,0.44"

SPRINGGREEN "0.0,1.00,0.50"

MINTCREAM "0.96,1.00,0.98"

MEDIUMSPRINGGREEN "0.0,0.98,0.60"

MEDIUMAQUAMARINE "0.40,0.80,0.67"

AQUAMARINE "0.50,1.00,0.83"

TURQUOISE "0.25,0.88,0.82"

LIGHTSEAGREEN "0.13,0.70,0.67"

MEDIUMTURQUOISE "0.28,0.82,0.80"

DARKSLATEGRAY "0.18,0.31,0.31"

DARKSLATEGREY "0.18,0.31,0.31"

PALETURQUOISE "0.69,0.93,0.93"

TEAL "0.0,0.50,0.50"

DARKCYAN "0.0,0.55,0.55"

AQUA "0.0,1.00,1.00"

CYAN "0.0,1.00,1.00"

LIGHTCYAN "0.88,1.00,1.00"

AZURE "0.94,1.00,1.00"

DARKTURQUOISE "0.0,0.81,0.82"

CADETBLUE "0.37,0.62,0.63"

POWDERBLUE "0.69,0.88,0.90"

LIGHTBLUE "0.68,0.85,0.90"

DEEPSKYBLUE "0.0,0.75,1.00"

SKYBLUE "0.53,0.81,0.92"

LIGHTSKYBLUE "0.53,0.81,0.98"

EventStudio System Designer 8

Page | 84

STEELBLUE "0.27,0.51,0.71"

ALICEBLUE "0.94,0.97,1.00"

SLATEGREY "0.44,0.50,0.56"

SLATEGRAY "0.44,0.50,0.56"

LIGHTSLATEGREY "0.47,0.53,0.60"

LIGHTSLATEGRAY "0.47,0.53,0.60"

DODGERBLUE "0.12,0.56,1.00"

LIGHTSTEELBLUE "0.69,0.77,0.87"

CORNFLOWERBLUE "0.39,0.58,0.93"

ROYALBLUE "0.25,0.41,0.88"

MIDNIGHTBLUE "0.10,0.10,0.44"

LAVENDER "0.90,0.90,0.98"

NAVY "0.0,0.0,0.50"

DARKBLUE "0.0,0.0,0.55"

MEDIUMBLUE "0.0,0.0,0.80"

BLUE "0.0,0.0,1.00"

GHOSTWHITE "0.97,0.97,1.00"

DARKSLATEBLUE "0.28,0.24,0.55"

SLATEBLUE "0.42,0.35,0.80"

MEDIUMSLATEBLUE "0.48,0.41,0.93"

MEDIUMPURPLE "0.58,0.44,0.86"

BLUEVIOLET "0.54,0.17,0.89"

INDIGO "0.29,0.0,0.51"

DARKORCHID "0.60,0.20,0.80"

DARKVIOLET "0.58,0.0,0.83"

MEDIUMORCHID "0.73,0.33,0.83"

THISTLE "0.85,0.75,0.85"

PLUM "0.87,0.63,0.87"

VIOLET "0.93,0.51,0.93"

PURPLE "0.50,0.0,0.50"

DARKMAGENTA "0.55,0.0,0.55"

FUCHSIA "1.00,0.0,1.00"

MAGENTA "1.00,0.0,1.00"

ORCHID "0.85,0.44,0.84"

MEDIUMVIOLETRED "0.78,0.08,0.52"

DEEPPINK "1.00,0.08,0.58"

EventStudio System Designer 8

Page | 85

HOTPINK "1.00,0.41,0.71"

PALEVIOLETRED "0.86,0.44,0.58"

LAVENDERBLUSH "1.00,0.94,0.96"

CRIMSON "0.86,0.08,0.24"

PINK "1.00,0.75,0.80"

LIGHTPINK "1.00,0.71,0.76"

EventStudio System Designer 8

Page | 86

8 DEPRECATED
This section documents FDL syntax that has been deprecated. This syntax is supported for backward

compatibility.

8.1 Case statement

This statement is used to specify multiple scenarios in the same FDL file. A case statement is enclosed

within a case-endcase block. The legs for the case are included within the case-endcase block. Use the

leg statement to define each scenario option. Nesting of case statements is also supported. A scenario

determines the flow of a feature under certain conditions. To define a scenario, use the Scenario Wizard

and select a leg from each case statement that is encountered in the feature flow. A case statement

can be put only inside the feature {} block in the FDL file.

There is no output corresponding to the case statement. The leg selected for defining the scenario is

displayed in bold in the right-side "remarks" column in a sequence diagram.

8.1.1 Examples

case
 leg "Switchover fails":
 ...
 leg "Switchover succeeds":
 ...
 leg "Switchover aborted":
 ...
endcase

Here, a simple case statement is shown where three legs have been specified. As a part of scenario

definition, when Scenario Wizard encounters this case statement, it prompts the user to select a leg

from the three options.

case
 leg "Partial dialing":
 ...
 leg "Complete dialing":
 ...
 case
 leg "Routing failure":
 ...
 leg "Routing successful":
 ...
 case
 leg "Outgoing trunk congestion":
 ...
 leg "Called party busy":
 ...
 leg "No answer":
 ...
 leg "Successful call":
 ...
 endcase
 endcase
endcase

Here, a nested case statement is shown. As a part of scenario definition, when Scenario Wizard

encounters this case statement, it prompts the user to select a leg from the outermost case statement.

If the user selects "Partial dialing", the scenario definition would complete. If, however, the user selects

EventStudio System Designer 8

Page | 87

"Complete dialing", Scenario Wizard will prompt the user to select another leg from the next nested

case. If the user selects "Routing successful", the user is again prompted to select a leg from the

innermost case statement. If the user selects "Successful call", the scenario definition for a successful

call would complete.

8.1.2 Relation with If-Else-Endif statement

• Any case leg traversed in the case-endcase may be used in an if-else-endif or if-endif statement.

• Case-endcase statements may be enclosed within an "if" or "else" part of an if-else-endif or if-

endif statements.

8.2 Leg statement

This statement is used to specify legs within a case-endcase block. The legs for the case are included

within the case-endcase block. The leg statement defines each scenario option. A scenario determines

the flow of a feature under certain conditions. To define a scenario, use the Scenario Wizard and select

a leg from each case statement that is encountered in the feature flow. A leg statement can be put only

inside the case-endcase block in the FDL.

The leg selected for defining the scenario is displayed in bold in the right-side "remarks" column in a

sequence diagram. The leg selections are also available as bookmarks in PDF sequence diagrams.

When a PDF sequence diagram is open, the leg selection bookmarks are shown on the left side of the

screen. Clicking on the bookmarks will take you directly to the leg selection.

Note: The strings used in this statement should not contain any leading or trailing blanks.

8.2.1 Examples

case
 leg "Switchover fails":
 ...
 leg "Switchover succeeds":
 ...
 leg "Switchover aborted":
 ...
endcase

Here, a simple case statement is shown where three legs have been specified. As a part of scenario

definition, when Scenario Wizard encounters this case statement, it prompts the user to select a leg

from the three options.

EventStudio System Designer 8

Page | 88

case
 leg "Partial dialing":
 ...
 leg "Complete dialing":
 ...
 case
 leg "Routing failure":
 ...
 leg "Routing successful":
 ...
 case
 leg "Outgoing trunk congestion":
 ...
 leg "Called party busy":
 ...
 leg "No answer":
 ...
 leg "Successful call":
 ...
 endcase
 endcase
endcase

Here, a nested case statement is shown. As a part of scenario definition, when Scenario Wizard

encounters this case statement, it prompts the user to select a leg from the outermost case statement.

If the user selects "Partial dialing", the scenario definition would complete. If, however, the user selects

"Complete dialing", Scenario Wizard will prompt the user to select another leg from the next nested

case. If the user selects "Routing successful", the user is again prompted to select a leg from the

innermost case statement. If the user selects "Successful call", the scenario definition for a successful

call would complete.

8.3 If-Else-Endif statement

This statement is used to choose different feature flows from previously encountered leg statements.

The string for the if-statement must have been defined as a leg of a previous case statement. When

EventStudio encounters the If-Else-Endif statement, it transfers control to the "If block" if the leg

corresponding to the "if string" has been chosen in a previous case statement. The control is transferred

to the "Else block" if the leg corresponding to the "if string" has not been chosen. Look at the example

given below to completely understand how this statement is used.

There is no output produced corresponding to this statement.

8.3.1 Examples

case
 leg "DTMF dialing":
 ...
 leg "Pulse dialing":
 ...
endcase
...
if "DTMF dialing"
 call frees "DTMF Receiver"
 call action "Increment DTMF counter"
else
 call action "Increment Pulse counter"
endif

EventStudio System Designer 8

Page | 89

Here, a case statement defines the legs "DTMF dialing" and "Pulse dialing". Later, in the feature flow if

statement checks if "DTMF dialing" leg was chosen. If "DTMF dialing" leg was taken, control is

transferred to the "if block". Otherwise the control is transferred to the "else block". It may be noted that

EventStudio remembers the leg selections and user is not prompted for an input when an "if statement"

is encountered.

case
 leg "Priority Delivery":
 ...
 leg "Standard Delivery":
 ...
endcase
...

case
 leg "Customer Present":
 ...
 leg "Customer Not Present":
 ...
endcase
...

if "Customer Not Present"
 if "Priority Delivery"
 driver action "Call the customer to reschedule delivery"
 else
 driver action "Leave the package at the door"
 endif
else
 call action "Deliver the package"
endif

The above example shows how an if-else-endif can be nested within another if-else-endif statement. If-

else-endif and if-else statements can be nested to specify the handling for combination of leg

statements.

8.4 If-Endif statement

This statement is used to choose different feature flows from previously encountered leg statements.

The string for the "if statement" must have been defined as a leg of a previously defined case

statement. When EventStudio encounters the If-Endif statement, it transfers control to the "If block" if

the leg corresponding to the "if string" has been chosen in a previous case statement. Look at the

example given below to completely understand how this statement is used.

There is no output produced corresponding to this statement.

8.4.1 Example

case
 leg "DTMF dialing":
 ...
 leg "Pulse dialing":
 ...
endcase
...
if "DTMF dialing"
 call frees "DTMF Receiver"
endif

EventStudio System Designer 8

Page | 90

Here, a case statement defines the legs "DTMF dialing" and "Pulse dialing". Later, in the feature flow if

statement checks if "DTMF dialing" leg was chosen. If "DTMF dialing" case leg was taken, control is

transferred to the "if block". Otherwise the control is transferred to the statement following "endif". It

may be noted that EventStudio remembers the leg selections and user is not prompted for an input

when an "if statement" is encountered.

case
 leg "Priority Delivery":
 ...
 leg "Standard Delivery":
 ...
endcase
...

case
 leg "Customer Present":
 ...
 leg "Customer Not Present":
 ...
endcase
...

if "Customer Not Present"
 if "Priority Delivery"
 driver action "Call the customer to reschedule delivery"
 else
 driver action "Leave the package at the door"
 endif
endif

The above example shows how an if-else-endif can be nested within an if-endif statement. If-else-endif

and if-else statements can be nested to specify the handling for combination of leg statements.

8.5 Goto and Label statements

The Goto statement allows you to jump forward to a label defined at a later point in the FDL. Use this

statement to exit the diagrams from error scenarios.

8.5.1 Example

case
 leg "No digits dialed":
 goto exit

 leg "All digits dialed":
endcase

case
 leg "Call routing successful":
 leg "Call routing failed":
 goto exit
endcase

label exit:
 |= call has ended. =|

A "goto" to the exit label is being used to end error scenarios in a call setup.

EventStudio System Designer 8

Page | 91

8.6 Remark and Block Remark Delimiters

Remark type EventStudio 6 delimiters EventStudio 7+ delimiters

Remarks (* multi line

remark *)

|*multi line

remark *|

(* single line remark *) % single line remark

Block remarks [* block remark *] |= block remark =|

8.7 Verbose Statement Syntax

Statement EventStudio 6 syntax EventStudio 7+ syntax

Single entity action obj takes action "My action" obj action "My action"

Multiple entity action obj1, obj2 take action "Joint action" obj1, obj2 action "Joint action"

Feature feature "My feature"

endfeature

feature "My feature" {

}

Sequence sequence "My sequence"

endsequence

sequence "My Sequence" {

}

	1 Getting Started
	1.1 Download Visual Studio Code and EventStudio extension
	1.2 Your First Project
	1.3 Learn Feature Description Language (FDL)
	1.4 Learn About Multiple Scenarios
	1.5 Editing Tips
	1.6 Community Edition vs Professional Edition
	1.7 Explore More

	2 Visual Guide to FDL
	2.1 Architecture Definition
	2.2 Messages
	2.3 Message Tagging
	2.4 Object Interactions
	2.5 Object Creation and Deletion
	2.6 Timers
	2.7 Actions
	2.7.1 Single Action
	2.7.2 Multiple Action

	2.8 Resource Allocations
	2.9 State Transitions
	2.10 Sequence Groupings
	2.11 Remarks
	2.12 Styling
	2.12.1 Axis Styles
	2.12.2 Interaction Styles

	3 Scenarios and Documents
	3.1 Scenarios
	3.2 Documents
	3.2.1 Required Document Fields for Different Document Types

	3.3 Predefined Sequence Diagram Formatting Options
	3.3.1 Choose Sequence Diagram Header and Remark format
	3.3.2 Choose Between Document, Presentation and Poster Layouts

	4 How To…
	4.1 Activate a License
	4.2 Add New Scenarios and Documents
	4.2.1 Before Adding Scenario
	4.2.2 After Adding Scenario
	4.2.3 Add a Document

	4.3 Add a New FDL File to the Project
	4.4 Invoke EventStudio from Command Line
	4.4.1 Add EventStudio to the Path
	4.4.2 Open the Integrated Terminal in Visual Studio Code

	4.5 Insert FDL Snippets
	4.6 Change EventStudio Configuration
	4.7 Export to Microsoft Word
	4.8 Convert EventStudio 6 Scenario Projects to JSON

	5 FDL Reference
	5.1 Architecture and Feature Definition
	5.1.1 System, Subsystem, Module and Component declaration
	5.1.2 Eternal Object declaration
	5.1.2.1 Examples

	5.1.3 Dynamic Object declaration
	5.1.3.1 Examples

	5.1.4 Type declaration
	5.1.4.1 Examples

	5.1.5 Environment interactions
	5.1.5.1 Examples

	5.1.6 Feature statement
	5.1.6.1 Examples

	5.2 Multiple Scenario Modeling
	5.3 Messages
	5.3.1 Message statement
	5.3.1.1 Advanced Uses
	5.3.1.2 Examples

	5.3.2 Chain statement
	5.3.2.1 Example

	5.3.3 Multicast statement
	5.3.3.1 Examples

	5.4 Object Interactions
	5.4.1 Invokes and Returns statements
	5.4.1.1 Examples

	5.5 Object Creation and Deletion
	5.5.1 Create statement
	5.5.1.1 Examples

	5.5.2 Delete statement
	5.5.2.1 Examples

	5.6 Timers
	5.6.1 Timer Start (One Shot and Periodic) statement
	5.6.1.1 Examples

	5.6.2 Timer Restart statement
	5.6.2.1 Example

	5.6.3 Timer Stop statement
	5.6.3.1 Examples

	5.6.4 Timeout statement
	5.6.4.1 Examples

	5.6.5 Time Passage statement

	5.7 Actions
	5.7.1 Action statement
	5.7.1.1 Examples

	5.7.2 Action Begin statement
	5.7.2.1 Examples

	5.7.3 Action End statement
	5.7.3.1 Examples

	5.8 Resource Allocations
	5.8.1 Resource Allocate statement
	5.8.1.1 Examples

	5.8.2 Resource Free statement
	5.8.2.1 Examples

	5.9 State Transitions
	5.9.1 State Change statement
	5.9.1.1 Examples

	5.10 Sequence Groupings
	5.10.1 Sequence Block Statement
	5.10.1.1 Examples

	5.10.2 Preconditions Block
	5.10.3 Postconditions Block
	5.10.4 Loop Block

	5.11 Remarks
	5.11.1 Remark statement
	5.11.1.1 Examples

	5.11.2 Block Remark statement
	5.11.2.1 Examples

	5.11.3 Comment statement
	5.11.3.1 Examples

	5.11.4 Heading statement
	5.11.4.1 Examples

	5.11.5 Issue statement
	5.11.5.1 Example

	5.12 Preprocessor
	5.13 Styles, Themes and Document Layout
	5.13.1 Style declaration
	5.13.1.1 Example

	5.13.2 Default Styles
	5.13.2.1 Example

	5.13.3 Regular Expression Style Filters
	5.13.3.1 Example

	5.13.4 Theme declaration
	5.13.5 Page Break statement
	5.13.5.1 Example

	5.13.6 Horizontal and Vertical Separator statements

	6 Regular Expression Reference
	6.1 Regular Expression Examples
	6.2 Regular Expression Rules

	7 Color Reference
	8 Deprecated
	8.1 Case statement
	8.1.1 Examples
	8.1.2 Relation with If-Else-Endif statement

	8.2 Leg statement
	8.2.1 Examples

	8.3 If-Else-Endif statement
	8.3.1 Examples

	8.4 If-Endif statement
	8.4.1 Example

	8.5 Goto and Label statements
	8.5.1 Example

	8.6 Remark and Block Remark Delimiters
	8.7 Verbose Statement Syntax

