
TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Network Server App

EventStudio System Designer 6

25-May-13 15:32 (Page 1)

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

TCP is an end to end protocol which operates over the heterogeneous Internet. TCP has no advance knowledge of the
network characteristics, thus it has to adjust its behavior according to the current state of the network. TCP has built in support
for congestion control. Congestion control ensures that TCP does not pump data at a rate higher than what the network can
handle.

In this sequence diagram we will analyse "Slow start", an important part of the congestion control mechanisms built right into
TCP. As the name suggests, "Slow Start" starts slowly, increasing its window size as it gains confidence about the networks
throughput.

Server Socket create Server Application creates a Socket

Closed The Socket is created in Closed
state

seq_num = 100 Server sets the initial sequence
number to 100

Passive_Open Server application has initiated a
passive open. In this mode, the
socket does not attempt to establish
a TCP connection. The socket
listens for TCP connection request
from clients

Listen Socket transitions to the Listen state

Server socket initialization

Server awaits client socket
connections.

Client Socketcreate Client Application creates Socket

Closed The socket is created in the Closed
state

seq_num = 0 Initial sequence number is set to 0

Client socket initialization

Socket initialization

Active_Open Application wishes to communicate
with a destination server using a
TCP connection. The application
opens a socket for the connection in
active mode. In this mode, a TCP
connection will be attempted with
the server.
Typically, the client will use a well
known port number to communicate
with the remote Server. For
example, HTTP uses port 80.

Client initiated three way handshake to establish a TCP connection

TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

25-May-13 15:32 (Page 2)

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

Client sets the SYN bit in the TCP
header to request a TCP
connection. The sequence number
field is set to 0. Since the SYN bit is
set, this sequence number is used
as the initial sequence number

SYN Sent Socket transitions to the SYN Sent
state

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

SYN TCP segment is received by
the server

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Server sets the SYN and the ACK
bits in the TCP header. Server
sends its initial sequence number as
100. Server also sets its window to
65535 bytes. i.e. Server has buffer
space for 65535 bytes of data. Also
note that the ack sequence numer is
set to 1. This signifies that the
server expects a next byte
sequence number of 1

SYN Received Now the server transitions to the
SYN Received state

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Client receives the "SYN+ACK"
TCP segment

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Client now acknowledges the first
segment, thus completing the three
way handshake. The receive
window is set to 5000. Ack
sequence number is set to 101, this
means that the next expected
sequence number is 101.

Established At this point, the client assumes that
the TCP connection has been
established

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Server receives the TCP ACK
segment

Established Now the server too moves to the
Established state

A TCP connection starts in the "Slow Start" state. In this state, TCP adjusts its transmission rate based on the rate at which
the acknowledgements are received from the other end.

TCP Slow start is implemented using two variables, viz cwnd (Congestion Window)and ssthresh (Slow Start Threshold).
cwnd is a self imposed transmit window restriction at the sender end. cwnd will increase as TCP gains more confidence on
the network's ability to handle traffic. ssthresh is the threshold for determining the point at which TCP exits slow start. If cwnd
increases beyond ssthresh, the TCP session in that direction is considered to be out of slow start phase

TCP slow start

TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

25-May-13 15:32 (Page 3)

cwnd = 512 (1 segment) Client maintains a congestion
window (cwnd). Initially the window
is set to lower of the maximum TCP
segment size and receiver's allowed
window size. In most cases the
segment size is smaller than
receiver window, thus cwnd is set to
the maximum TCP segment size
(512 in this example)
Note here that cwnd implements a
transmitter end flow control. The
receiver advertised window
implements a receiver enforced flow
control.

ssthresh = 65535 TCP connections start with ssthresh
set to 64K. This variable will be
used to determine the point at which
TCP exits slow start

Slow Start Client end TCP connection moves
to slow start state

cwnd = 512 (1 segment) By the same logic, the server also
sets cwnd to 512

ssthresh = 65535

Slow Start Server end TCP connection moves
to slow start state

Data
size = 5120

Client application sends 5120 bytes
of data to the socket

TCP Segment
seq_num = 1,
len = 512

The first TCP segment is sent with a
sequence number of 1. This is the
sequence number for the first byte
in the segment.

TCP Segment
seq_num = 1,
len = 512

ACK
ack_num = 513

Server acknowledges the data
segments with the next expected
sequence number as 513
TCP typically sends an
acknowledgement every two
received segments but in this case it
times out for another segment and
decides to acknowledge the only
segment received.

ACK
ack_num = 513

Client receives the
acknowledgement for the first TCP
data segment

cwnd = 1024 (2 segments) As the TCP session is in slow start,
receipt of an acknowledgement
increments the congestion window
by one 1 segment.

Roundtrip #1 of data transmission

Roundtrip #2 of data transmission

TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

25-May-13 15:32 (Page 4)

TCP Segment
seq_num = 513,
len = 512

Since the congestion window has
increased to 2, TCP can now send
two segments without waiting for an
ack

TCP Segment
seq_num = 1025,
len = 512

TCP Segment
seq_num = 513,
len = 512

TCP Segment
seq_num = 1025,
len = 512

ACK
ack_num = 1537

Receiver generates a TCP ACK on
receiving the two segments

ACK
ack_num = 1537

cwnd = 1536 (3 segments) Receipt for ack again moves the
congestion window

TCP Segment
seq_num = 1537,
len = 512

Now three segments can be sent
without waiting for an ack

TCP Segment
seq_num = 2049,
len = 512

TCP Segment
seq_num = 2561,
len = 512

TCP Segment
seq_num = 1537,
len = 512

Network delivers the three
segments to the destination server

TCP Segment
seq_num = 2049,
len = 512

ACK
ack_num = 2561

TCP acknowledges receipt of two
segments

TCP Segment
seq_num = 2561,
len = 512

ACK
ack_num = 3073

TCP times for another segment and
acknowledges the only pending
segment

Roundtrip #3 of data transmission

TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

25-May-13 15:32 (Page 5)

ACK
ack_num = 2561

The TCP acknowlegements again
increment cwnd. This time two acks
are received, so cwnd will get
incremented by 2

cwnd = 2048 (4 segments)

ACK
ack_num = 3073

cwnd = 2560 (5 segments)

TCP Segment
seq_num = 3073,
len = 512

Since cwnd has reached 5
segments, TCP is allowed to send 5
segments without waiting for the ack

TCP Segment
seq_num = 3585,
len = 512

TCP Segment
seq_num = _4097,
len = 512

TCP Segment
seq_num = _4609,
len = 512

TCP Segment
seq_num = _5121,
len = 512

TCP Segment
seq_num = 3073,
len = 512

The 5 segments are received by the
destination server

TCP Segment
seq_num = 3585,
len = 512

ACK
ack_num = 4097

TCP Ack is sent after first two
segments

TCP Segment
seq_num = 4097,
len = 512

TCP Segment
seq_num = 4609,
len = 512

ACK
ack_num = 5121

Ack for next two segments

TCP Segment
seq_num = 5121,
len = 512

Roundtrip #4 of data transmission

TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

25-May-13 15:32 (Page 6)

ACK
ack_num = 5633

Ack for last segment

ACK
ack_num = 4097

Three acknowledgements will be
received for the 5 TCP segments.
Now the cwnd has almost started
increasing geometrically for every
round trip between the client and
the server.

cwnd = 3072 (6 segments)

ACK
ack_num = 5121

cwnd = 3584 (7 segments)

ACK
ack_num = 5633

cwnd = 4096 (8 segments)

TCP Segment This time 8 TCP segments are sent

TCP Segment

TCP Segment

TCP Segment

TCP Segment

TCP Segment

TCP Segment

TCP Segment

TCP Segment

TCP Segment

ACK Ack for first two segments

TCP Segment

TCP Segment

ACK Ack for next two segments

TCP Segment

TCP Segment

ACK Ack for next two segments

TCP Segment

TCP Segment

ACK Ack for next two segments

ACK Now four acks will be received, thus
moving cwnd even more quickly

Roundtrip #5 of data transmission

TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

25-May-13 15:32 (Page 7)

cwnd = 4608 (9 segments)

ACK

cwnd = 5120 (10 segments)

ACK

cwnd = 5630 (11 segments)

ACK

cwnd = 6144 (12 segments)

Within a few more roundtrip interactions cwnd will exceed ssthresh. At this
point the session will be considered out of slow start. Note that the TCP
connection from the client side is out of slow start but the server end is still in
slow start as it has not sent any data to the client.

Exiting slow start signifies that the TCP connection has reached an equilibrium
state where the congestion window closely matches the networks capacity.
From this point on, the congestion window will not move geometrically. cwnd
will move linearly once the connection is out of slow start.

Congestion Avoidance Once slow start ends, the session
enters congestion avoidance state.
This will be discussed in a
subsequent article.

Close Client application wishes to release
the TCP connection

FIN Client sends a TCP segment with
the FIN bit set in the TCP header

FIN Wait 1 Client changes state to FIN Wait 1
state

FIN Server receives the FIN

ACK Server responds back with ACK to
acknowledge the FIN

Close Wait Server changes state to Close Wait.
In this state the server waits for the
server application to close the
connection

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2.
In this state, the TCP connection
from the client to server is closed.
Client now waits close of TCP
connection from the server end

Client to server TCP connection release

Server to client TCP connection release

Client closes TCP connection

TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

25-May-13 15:32 (Page 8)

Close Server application closes the TCP
connection

FIN FIN is sent out to the client to close
the connection

Last Ack Server changes state to Last Ack. In
this state the last acknowledgement
from the client will be received

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle
scenarios where the last ack has
been lost and server resends FIN

Time Wait Client waits in Time Wait state to
handle a FIN retry

ACK Server receives the ACK

Closed Server moves the connection to
closed state

delete

Close_Timer Close timer has expired. Thus the
client end connection can be closed
too.

Closed

delete

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

	TCP - Transmission Control Protocol
	TCP Slow Start
	Socket initialization
	Server socket initialization
	Client socket initialization

	Client initiated three way handshake to establish a TCP connection
	TCP slow start
	Roundtrip #1 of data transmission
	Roundtrip #2 of data transmission
	Roundtrip #3 of data transmission
	Roundtrip #4 of data transmission
	Roundtrip #5 of data transmission

	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release

