
Client Net Server

Client App Network

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

We have already seen that TCP connection starts up in slow start mode, geometrically increasing the congestion window
(cwnd) until it crosses the slow start threshold (ssthresh). Once cwnd is greater that ssthresh, TCP enters the congestion
avoidance mode of operation. In this mode, the primary objective is to maintain high throughput without causing congestion. If
TCP detects segment loss, it assumes that congestion has been detected over the internet. As a corrective action, TCP
reduces its data flow rate by reducing cwnd. After reducing cwnd, TCP goes back to slow start.

Server awaits client socket connections.

Client
Socket

create Client Application creates Socket

Closed The socket is created in the Closed state

seq_num = 0 Initial sequence number is set to 0

Client socket initialization

Socket initialization

Active_Open Application wishes to communicate with a destination server
using a TCP connection. The application opens a socket for the
connection in active mode. In this mode, a TCP connection will
be attempted with the server.
Typically, the client will use a well known port number to
communicate with the remote Server. For example, HTTP uses
port 80.

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

Client sets the SYN bit in the TCP header to request a TCP
connection. The sequence number field is set to 0. Since the
SYN bit is set, this sequence number is used as the initial
sequence number

SYN Sent Socket transitions to the SYN Sent state

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Client receives the "SYN+ACK" TCP segment

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Client now acknowledges the first segment, thus completing the
three way handshake. The receive window is set to 5000. Ack
sequence number is set to 101, this means that the next
expected sequence number is 101.

Established At this point, the client assumes that the TCP connection has
been established

Client initiated three way handshake to establish a
TCP connection

cwnd = 512 bytes (1 segment) TCP connection begins with a congestion window size of 1
segment

Slow start

Client Net Server

Client App Client
Socket

Network Server
Socket

ssthresh = 65535 bytes The slow start threshold starts with 64 Kbytes as the threshold
value.

TCP session begins with 'Slow Start' Click on the action title for a detailed description of the TCP
slow start.

Slow Start Since cwnd < ssthresh, TCP state is slow start

TCP congestion window grows from 512 bytes (1 segment) to
64947

TCP congestion window grows at the start of the session if no
segment losses are detected during slow start). During slow
start the congestion window was being incremented by 1
segment for every TCP Ack from the other end.

Data Client Application sends data for transmission over the TCP
Socket

TCP Segment
seq_num = 100000,
len = 512

Data is split into TCP Segments. The segments are sent over
the Internet

TCP Segment
seq_num = 100512,
len = 512

ACK
ack_num = 101024,
window = 80000

cwnd = 64947 + 512 = 65459 Since TCP is in slow start, every ack leads to the window
growing by one segment.

About to exit slow start

Congestion Avoidance At this point cwnd (=65459) > ssthresh (=65535) thus TCP
changes state to congestion avoidance. Now TCP window
growth will be much more conservative. If no segment or ack
losses are detected, the congestion window will grow no more
than one segment per roundtrip. (Compare this with geometric
growth of 1 segment per TCP ack in slow start)

Data More data is received from the client application

TCP Segment
seq_num = 101024,
len = 512

Client data is split into TCP segments

TCP Segment
seq_num = 101536,
len = 512

ACK
ack_num = 102048,
window = 80000

cwnd is incremented using the formula: cwnd = cwnd +
(segment_size segment_size) / cwnd)

cwnd = 65459 + [(512 * 512) /
65459] = 65459 + 4 = 65463

Now TCP is in congestion avoidance mode, so the TCP window
advances very slowly. Here the window increased by only 4
bytes.

Congestion Avoidance

http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start

Client Net Server

Client App Client
Socket

Network Server
Socket

Data Data to be sent to server

TCP Segment
seq_num = 102048,
len = 512

TCP session sends out the data as a single segment

AckTimer TCP session starts a ack timer, awaiting the TCP ack for this
segment.
Note: The above timer is started for every segment. The timer is
not shown at other places as it does not play a role in our
analysis.

AckTimer TCP times out for a TCP ACK from the other end. This will be
treated as a sign of congestion by TCP

ssthresh = 65463/2 = 32731 When TCP detects congestion, it stores half of the current
congestion window in ssthresh variable. In this case, ssthresh
has been reduced from 65535 to 32731. This signifies that TCP
now has less confidence on the network's ability to support big
window sizes. Thus if the window size falls due to congestion,
rapid window size increases will be carried out only until the
window reaches 32731. Once this lowered ssthresh value is
reached, window growth will be much slower.

A TCP segment is lost

cwnd = 512 bytes (1 segment) Since current congestion has been detected by timeout, TCP
takes the drastic action of reducing the congestion window to 1.
As you can see, this will have a big impact on the throughput.

Slow Start cwnd (=1) is now lower than ssthresh (=32731) so TCP goes
back to slow start.

TCP Segment
seq_num = 102048,
len = 512

ACK
ack_num = 102560

cwnd = 512 + 512 = 1024 Since TCP is in slow start, a TCP acknowledgement results in
the window growing by one segment

TCP window continues to grow exponentially until it reaches the
ssthresh (=32731) value

Data
size = 3072

TCP Segment
size = 512

Six TCP segments are transmitted in the slow start mode

TCP Segment
size = 512

TCP Segment
size = 512

Back to slow start

Client Net Server

Client App Client
Socket

Network Server
Socket

TCP Segment
size = 512

TCP Segment
size = 512

TCP Segment
size = 512

ACK Ack for the first two segments is received

cwnd = 32730 + 512 = 33242 TCP is in slow start so the congestion window is increased by
one segment

Congestion Avoidance Now cwnd (=33242") > ssthresh (=32731), thus the TCP
session moves into congestion avoidance

ACK Ack for the next two segments is received

cwnd = 33242 +
(512*512)/33242 = 33242 + 8 =

33250

Now the TCP window is growing very slowly by approximately 8
bytes per ack

ACK Ack for the last two segments is received

cwnd = 33250 +
(512*512)/33250 = 33250 + 8 =

33258

Congestion window continues to advance at a slow rate

Back to congestion avoidance

Close Client application wishes to release the TCP connection

FIN Client sends a TCP segment with the FIN bit set in the TCP
header

FIN Wait 1 Client changes state to FIN Wait 1 state

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state, the TCP
connection from the client to server is closed. Client now waits
close of TCP connection from the server end

Client to server TCP connection release

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where the last ack has
been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN retry

Close_Timer Close timer has expired. Thus the client end connection can be
closed too.

Closed

Server to client TCP connection release

Client closes TCP connection

Client Net Server

Client App Client
Socket

Network

delete

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

	TCP - Transmission Control Protocol
	TCP Congestion Avoidance
	Socket initialization
	Client socket initialization

	Client initiated three way handshake to establish a TCP connection
	Slow start
	About to exit slow start

	Congestion Avoidance
	A TCP segment is lost

	Back to slow start
	Back to congestion avoidance
	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release

