
Module Interfaces (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node EventStudio System Designer 6

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

TCP Slow Start and Congestion Avoidance lower the data throughput drastically when segment loss is detected. Fast
Retransmit and Fast Recovery have been designed to speed up the recovery of the connection, without compromising its
congestion avoidance characteristics.

Fast Retransmit and Recovery detect a segment loss via duplicate acknowledgements. When a segment is lost, TCP at the
receiver will keep sending ack segments indicating the next expected sequence number. This sequence number would
correspond to the lost segment. If only one segment is lost, TCP will keep generating acks for the following segments. This will
result in the transmitter getting duplicate acks (i.e. acks with the same ack sequence number)

Server awaits client socket connections.

Socket initialization

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

Client sets the SYN bit in the TCP header to request a TCP connection.
The sequence number field is set to 0. Since the SYN bit is set, this
sequence number is used as the initial sequence number

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

SYN TCP segment is received by the server

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Server sets the SYN and the ACK bits in the TCP header. Server sends
its initial sequence number as 100. Server also sets its window to 65535
bytes. i.e. Server has buffer space for 65535 bytes of data. Also note
that the ack sequence numer is set to 1. This signifies that the server
expects a next byte sequence number of 1

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Client receives the "SYN+ACK" TCP segment

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Client now acknowledges the first segment, thus completing the three
way handshake. The receive window is set to 5000. Ack sequence
number is set to 101, this means that the next expected sequence
number is 101.

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Server receives the TCP ACK segment

Client initiated three way handshake to establish a
TCP connection

TCP Connection begins with slow start. The congestion window grows from an initial 512 bytes to 70000 bytes

TCP Segment
seq_num = 100000

TCP segment (start sequence number = 100000) is transmitted

TCP Segment
seq_num = 100512

TCP segment (start sequence number = 100512) is transmitted

Loss of a TCP segment

Module Interfaces (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node EventStudio System Designer 6

TCP Segment
seq_num = 101024

TCP segment (start sequence number = 101024) is transmitted

TCP Segment
seq_num = 101536

TCP segment (start sequence number = 101536) is transmitted

TCP Segment
seq_num = 102048

TCP segment (start sequence number = 102048) is transmitted

TCP Segment
seq_num = 102560

TCP segment (start sequence number = 102560) is transmitted

TCP Segment
seq_num = 103072

TCP segment (start sequence number = 103072) is transmitted

TCP Segment
seq_num = 103584

TCP segment (start sequence number = 103584) is transmitted

TCP Segment
seq_num = 100000

TCP segment (start sequence number = 100000) is delivered to the
receiver

TCP Segment
seq_num = 100512

TCP segment (start sequence number = 100512) is lost due to
congestion in the network.

TCP Segment
seq_num = 101024

TCP Segment with start sequence number 101024 is received. TCP
realizes that a segment has been missed. TCP buffers the out of
sequence segment as TCP cannot deliver out of sequence data to the
application.

ACK
ack_num = 100512

TCP sends an acknowledgement to the Sender with the next expected
sequence number set to 100512.

TCP Segment
seq_num = 101536

TCP receives the next segment. This and the following out of sequence
segments will be buffered by TCP.

ACK
ack_num = 100512

TCP sends another acknowledgement with the next expected sequence
number still set to 100512. This is a duplicate acknowledgement

TCP Segment
seq_num = 102048

ACK
ack_num = 100512

TCP keeps acknowledging the received segments with the next
expected sequence number as 100512

TCP Segment
seq_num = 102560

ACK
ack_num = 100512

TCP Segment
seq_num = 103072

ACK
ack_num = 100512

TCP Segment
seq_num = 103584

Module Interfaces (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node EventStudio System Designer 6

ACK
ack_num = 100512

Fast Retransmit: TCP receives duplicate
acks and it decides to retransmit the
segment, without waiting for the segment
timer to expire. This speeds up recovery
of the lost segment

ACK
ack_num = 100512

Client receives acknowledgement to the segment with starting sequence
number 100512

ACK
ack_num = 100512

First duplicate ack is received. TCP does not know if this ack has been
duplicated due to out of sequence delivery of segments or the duplicate
ack is caused by lost segment.

ACK
ack_num = 100512

Second duplicate ack is received

ACK
ack_num = 100512

Third duplicate ack is received. TCP now assumes that duplicate acks
point to a segment that has been lost

TCP Segment
seq_num = 100512

TCP retransmits the missing segment i.e. the segment corresponding to
the ack sequence number in the duplicate acks

Fast retransmit

Fast Recovery: Once the lost segment has been
transmitted, TCP tries to maintain the current data
flow by not going back to slow start. TCP also
adjusts the window for all segments that have been
buffered by the receiver.

ACK
ack_num = 100512

Another duplicate ack is received. This means that the receiver has
buffered one more segment

ACK
ack_num = 100512

Yet another ack is received, this will further inflate the congestion
window

TCP Segment
seq_num = 100512

Finally, the retransmitted segment is delivered to the server

ACK
ack_num = 104096

Now TCP acknowledges all the segments that it had buffered

ACK
ack_num = 104096

The cummulative TCP ack is delivered to the client

Fast Recovery

Congestion Avoidance

FIN Client sends a TCP segment with the FIN bit set in the TCP header

Client to server TCP connection release

Client closes TCP connection

Module Interfaces (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node EventStudio System Designer 6

FIN Server receives the FIN

ACK Server responds back with ACK to acknowledge the FIN

ACK Client receives the ACK

FIN FIN is sent out to the client to close the connection

FIN Client receives FIN

ACK Client sends ACK

ACK Server receives the ACK

Server to client TCP connection release

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

	TCP - Transmission Control Protocol
	TCP Fast Retransmit and Recovery
	Socket initialization
	Client initiated three way handshake to establish a TCP connection
	Loss of a TCP segment
	Fast retransmit
	Fast Recovery
	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release

