EventHelix.com

- telecommunication design
- systems engineering
- real-time and embedded systems

LTE Attach and Default Bearer Setup Messaging

© 2012 EventHelix.com Inc. All Rights Reserved

LTE Attach Message Sequence Chart

EventHelix.com

- telecommunication design
- systems engineering
- real-time and embedded systems

© 2012 EventHelix.com Inc.

EventHelix.com

- telecommunication design
- systems engineering
- real-time and embedded systems

S1AP: eNodeB \rightarrow MMF **S1AP Initial UE Message**

- Initial UE Message is the first • message sent to the MME to establish a connection
- The eNode uses the eNB-UE-S1AP-• ID to uniquely identify the UE
- EPS attach type may be: •
 - EPS Attach: UE is attaching only ٠ to the 4G LTF network
 - ٠ **Combined EPS/IMSI Attach:**
- The UE identity is specified is: •
 - **IMSI:** If the UF has is not • registered with the network
 - Old GUTI: Subsequent attach ٠ requests identify the UE with the Old GUTI

S6A: MME → HSS Diameter Update Location Request

- MME updates the UE location with the HSS
- Origin and Destination are specified as Host and Realm (domain)
- The user name in the request is set to IMSI
- The Radio Access Technology is specified in the RAT Type
 - It will be set to EUTRAN for LTE access
- The Visited PLMN is also included in the message

- telecommunication design
- systems engineering
- real-time and embedded systems

S6A: MME ← HSS Diameter Update Location Answer

- The HSS accesses the database and responds with user information to the MME
- The Aggregate Maximum Bit Rate (AMBR) occurs twice in the message:
 - The first occurrence specifies the maximum bit rate for the default PDP context
 - The second occurrence specifies the data maximum data limit via the APN. These limits are specified by the PDN
- APN configuration also includes:
 - IP address of the PDN Gateway. This address is used to determine the default route for the traffic towards the Internet
 - IP address assigned to the UE (Served Party IP Address)

Default Bearer Establishment Establishment Establishment

S11: MME \rightarrow SGW **GTP** Create Session Request

- MME initiates the default route ٠ establishment by asking the SGW to create a GTP tunnel
- The source is identified by the fully • gualified endpoint identifier with the Tunnel Endpoint Identifier (TEID) and the MME IP Address
- The IP Address assigned to the UE • is also included along with the downlink and uplink maximum data rates allowed at the APN level
- The TAI and ECGI (E-UTRAN Cell • Group Identifier) information identify the current location of the user

- telecommunication design
- systems engineering
- real-time and embedded systems

S1AP: eNodeB ← MME S1AP Initial Context Setup Request NAS Attach Accept Activate Default Bearer Request

The next message from the MME is really a three-in-one. The message contains:

- SIAP Initial Context Setup Request
 - A request to establish a context between the MME and eNodeB
 - The message contains SGW tunneling information
- NAS Attach Accept
 - This message acknowledges the successful Attach to the UE.
 - The eNodeB will pass this message to the UE
- Activate Default Bearer Request
 - The message initiates the default bearer setup on the UE
 - The eNodeB will pass this message to the UE

- telecommunication design
- systems engineering
- real-time and embedded systems

S1AP: eNodeB ← MME S1AP Initial Context Setup Request

- The MME responds with MME UE S1AP ID that was received from the eNodeB in the initial UE message
- The message also contains the MME UE S1AP ID
- The message contains the maximum aggregate bit rate information.
- The message also contains the information about the default eRAB.
 - QCI to assign session priority
 - The maximum bit rate for the eRAB
 - Guaranteed bit rate for the eRAB
 - Transport Layer Address assigns the IP Address for the user plane entity on the S-GW
 - GTP TE ID identifies the S-GW end of the user plane tunnel
- The security capabilities specify the encryption and integrity protection algorithm to be used for the UE session

eNodeB ← MME UE ← eNodeB NAS Attach Accept

- The Attach Accept is carried as NAS payload in the Initial Context Setup Request
- The message specifies that the attach has been successful. The terminal is attached to the EPS only (i.e. LTE only, no SGSN registration)
- The T3412 timer specifies the maximum time between tracking area updates from the terminal
- The TAI list in the message specifies the PLMN and the Tracking Area Codes for all the registered tracking areas
- The message contains GUTI. GUTI uniquely identifies the UE with PLMN, MME Group, MMC code and the M-TMSI
- Finally, the GPRS Ready timer is included in the message.
 - The UE will be transitioned to IDLE if no activity is detected for this period

- telecommunication design
- systems engineering
- real-time and embedded systems

eNodeB ← MME UE ← eNodeB Activate Default Bearer Request

- The Attach Accept is carried as NAS payload in the Initial Context Setup Request
- The EPS Bearer id identifies the bearer that needs to be activated
- The EPS QoS carries quality of service information:
 - QCI to assign session priority
 - The maximum bit rate for the bearer
 - Guaranteed bit rate for the bearer
- The Access Point Name (APN) is included in the message
- The PDN IP address assigned by the HSS is passed to the UE

- telecommunication design
- systems engineering
- real-time and embedded systems

eNodeB → MME Initial Context Setup Response

- The eNodeB sends the Initial Context Setup Response message to the MME.
- The message confirms the establishment of the GTP tunnel on the S1-U interface
- The message contains information about the RABs that are being established at startup.
- The following information is present for each RAB
 - The E-RAB ID
 - The transport layer IP address on the eNodeB.
 - The eNodeB GTP Tunneling ID (TEID) for the eNodeB side.

- telecommunication design
- systems engineering
- real-time and embedded systems

Completing the Attach and Default Bearer Activation

eNodeB → MME: Attach Complete + Activate Default Bearer Accept

- eNodeB transports Attach Complete and Activate Default Bearer Accept
- The message was received from the UE

 Inform SGW about the eNodeB's user plane IP address and GTP TEID

- telecommunication design
- systems engineering
- real-time and embedded systems

Thank You

- EventHelix.com
- telecommunication design
- systems engineering
- real-time and embedded systems

Thank you for visiting EventHelix.com. The following links provide more information about telecom design tools and techniques:

Links	Description
EventStudio System Designer	Sequence diagram based systems engineering tool.
VisualEther Protocol Analyzer	Wireshark based visual protocol analysis and system design reverse engineering tool.
Telecom Call Flows	GSM, SIP, H.323, ISUP, LTE and IMS call flows.
TCP/IP Sequence Diagrams	TCP/IP explained with sequence diagrams.
Telecom • Networking • Software	Real-time and embedded systems, call flows and object oriented design articles.