
Client Server

HTTPS SSL/TLS Session for SPDY
This sequence diagram covers the establishment of a SSL/TLS connection for sending Google SPDY data. The protocol flow covers:

(1) SSL/TLS initial cryptographic parameter negotiation.

(2) Certificate exchange and encryption start with elliptic curve Diffie Hellman key exchange.

(3) Master key generation and encrypted data transfer.

(4) SSL/TLS session release.

Generated with EventStudio (http://www.eventhelix.com/eventstudio/) and VisualEther (http://www.eventhelix.com/visualether/)

Note: You can click on any message title in this flow to examine the message structure and fields.

The client establishes a TCP connection with server port 443.

TCP SYN
TCP Segment Len: 0,
Sequence number: 0 (relative sequence number),
MSS Value: 1460

TCP SYN, ACK
TCP Segment Len: 0,
Sequence number: 0 (relative sequence number),
MSS Value: 1430

TCP ACK
TCP Segment Len: 0,
Sequence number: 1 (relative sequence number)

TCP Connection Establishment

Select a Client Random Number The client generates a random number that will
be later used to compute the final symmetric
key.

TLS Client Hello
SSL Record Layer: Handshake Protocol: Client Hello,
Content Type: Handshake (22),
Version: TLS 1.0 (0x0301),
Handshake Type: Client Hello (1),
Cipher Suites (51 suites),
Compression Methods (1 method),
Server Name: www.google.com,
Elliptic curves point formats (3),
Elliptic curves (25 curves),
Client Random Number

The client initiates the SSL/TLS session by
sending a Client Hello. The message specifies
the client capabilities like ciphering suites,
compression support, supported elliptic curve
formats. In this case, the client specifies that it
supports 51 cipher suites and 25 elliptic curves
(Click on the message title to see the full
message contents.)

TCP ACK
TCP Segment Len: 0,
Sequence number: 1 (relative sequence number)

TCP ack.

Compare the client crypto
parameters with server crypto

parameters and finalize the crypto
parameters for the session.

The server examines the crypto capabilities
reported in the TLS Client Hello with the crypto
capabilities at the server end. The server makes
a final selection based on the crypto capabilities
of the client and the server.

Allocate a Session Identifier The server assigns a Session identifier to the
message. This session id may be used to
reactivate the session without going through
the complete exchange described here.

SSL/TLS Initial Cryptographic Parameter Negotiation

http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/1.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/2.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/3.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/4.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/5.htm

Client Server

Select a Server Random Number The server generates a random number that will
be later used to compute the final symmetric
key.

TLS Server Hello
TLSv1.1 Record Layer: Handshake Protocol: Server Hello,
Content Type: Handshake (22),
Version: TLS 1.1 (0x0302),
Handshake Protocol: Server Hello,
Handshake Type: Server Hello (2),
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013),
Elliptic curves point formats (3),
EC point format: uncompressed (0),
EC point format: ansiX962_compressed_prime (1),
EC point format: ansiX962_compressed_char2 (2),
Server Random Number,
Session Identifier

The server makes a final selection based on the
crypto capabilities of the client and the server.
In this case, the server has selected:
- RSA for Certification
- Elliptic Curve based Diffie Hellman
- AES 128 Encryption for the data

TCP ACK
TCP Segment Len: 0,
Sequence number: 245 (relative sequence number)

TCP SEGMENT+ACK
TCP Segment Len: 1418,
Sequence number: 1419 (relative sequence number)

A segment of the "TLS Certificate + Server Key
Exchange + Server Done" message. The
message is split into two IP segments.

TCP ACK
TCP Segment Len: 0,
Sequence number: 245 (relative sequence number)

Pick the elliptic curve and base
point for the session

Select the elliptic curve and the base point that
will be used for the Diffie-Hellman key
exchange. Click on the action box to learn more
about elliptic curve cryptography.

Server Private EC Key = Random
number

A random number is generated to be used as
the server's private key.

Server Public Key = Elliptic Curve
Dotting(elliptic curve, base point,

Server Private EC Key)

Derive the public key that will be sent to the
client.

Server: Setup Elliptic Curve
Cryptography

TLS Certificate + Server Key Exchange + Server Done
TLSv1.1 Record Layer: Handshake Protocol: Certificate,
Content Type: Handshake (22),
Version: TLS 1.1 (0x0302),
Handshake Protocol: Certificate,
Handshake Type: Certificate (11),
Certificate Length: 1146,
Certificate (id-at-commonName=www.google.com,id-at-organizationName=Google
Inc,id-at-localityName=Mountain View,id-at-stateOrProvinceName=California,i,
Certificate Length: 1032,
Certificate (id-at-commonName=Google Internet Authority G2,id-at-organizationName=Google
Inc,id-at-countryName=US),
Certificate Length: 897,
Certificate (id-at-commonName=GeoTrust Global CA,id-at-organizationName=GeoTrust
Inc.,id-at-countryName=US),
TLSv1.1 Record Layer: Handshake Protocol: Server Key Exchange,
Content Type: Handshake (22),
Version: TLS 1.1 (0x0302),
Handshake Protocol: Server Key Exchange,
Handshake Type: Server Key Exchange (12),
Curve Type: named_curve (0x03),
TLSv1.1 Record Layer: Handshake Protocol: Server Hello Done,
Content Type: Handshake (22),
Version: TLS 1.1 (0x0302),
Handshake Protocol: Server Hello Done,
Handshake Type: Server Hello Done (14)

The server sends a compound message that
contains the following:

X.509 Certificates
A cascade of three certificates to authenticate
that the Google Server:
(1) Google server certificate (issued and signed
by Google Intermediate CA)
(2) Google Intermediate CA certificate (issued
and signed by GeoTrust CA)
(3) GeoTrust CA certificate. (issued and signed
by Equifax Root CA)

Server Key Exchange
The Google server is using Elliptic Curve
cryptography so it sends a EC Diffie-Hellman
public key and signature.

Server Done
Signals that the complete cryptographic
information has been sent from the server.

Certificate Exchange and Encryption Start

http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/6.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/7.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/8.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/9.htm
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/10.htm

Client Server

TCP ACK
TCP Segment Len: 0,
Sequence number: 245 (relative sequence number)

Get the elliptic curve and base
point for the session from the

Server Key Exchange

Select the elliptic curve and the base point that
will be used for the Diffie-Hellman key
exchange. Click on the action box to learn more
about elliptic curve cryptography.

Client Private EC Key = Random
number

A random number is generated to be used as
the client's private key.

Client Public Key = Elliptic Curve
Dotting(elliptic curve, base point,

Client Private EC Key)

Derive the public key that will be sent to the
server.

Client: Setup Elliptic Curve
Cryptography

TLS Client Key Exchange + Change Cipher Spec + Encrypted Finished Message
TLSv1.1 Record Layer: Handshake Protocol: Client Key Exchange,
Content Type: Handshake (22),
Version: TLS 1.1 (0x0302),
Handshake Protocol: Client Key Exchange,
Handshake Type: Client Key Exchange (16),
TLSv1.1 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec,
Content Type: Change Cipher Spec (20),
Version: TLS 1.1 (0x0302),
TLSv1.1 Record Layer: Handshake Protocol: Encrypted Handshake Message,
Content Type: Handshake (22),
Version: TLS 1.1 (0x0302),
Handshake Protocol: Encrypted Finished Message

Client Key Exchange
The client sends EC Diffie-Hellman public key
and signature.

Change Cipher Spec
Client signals that is initiating encryption from
the next record.

Encrypted Finished Message
This message contains the MAC of the
handshake messages. The MAC ensures that
the handshake messages that were sent in the
clear have not been modified by a third party.

Compute the MAC on handshake
messages to ensure integrity

The client proceeds only if the MAC integrity
check passes.

Generate the Pre Master Secret from
Client Private EC Key and Server

Public EC Key

The shared secret is derived as a result of the
Diffie-Hellman key exchange.

TLS Change Cipher Spec + Encrypted Finished Message
TLSv1.1 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec,
Content Type: Change Cipher Spec (20),
Version: TLS 1.1 (0x0302),
TLSv1.1 Record Layer: Handshake Protocol: Encrypted Handshake Message,
Content Type: Handshake (22),
Version: TLS 1.1 (0x0302),
Handshake Protocol: Encrypted Finished Message

Change Cipher Spec
Server signals that is initiating encryption from
the next record.

Encrypted Finished Message
This message contains the MAC of the
handshake messages. The MAC ensures that
the handshake messages that were sent in the
clear have not been modified by a third party.

Compute the MAC on handshake
messages to ensure integrity

The client proceeds only if the MAC integrity
check passes.

Generate the Pre Master Secret from
Server Private EC Key and Client

Public EC Key

The shared secret is derived as a result of the
Diffie-Hellman key exchange.

The Master Key that will be used for symmetric encryption is generated at the client and the
server.

Master Key = Hash (Pre Master Key,
Client Random Number, Server

Random Number)

The client generates the Master Key that
depends on the Pre Master Key and the client
and server random numbers. This protects the
session from replay attacks.

Master Key = Hash (Pre Master Key,
Client Random Number, Server

Random Number)

The server also generates the Master Key.

Generate Master Key

http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/11.htm
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/12.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/13.htm

Client Server

TLS Application Data: spdy
TLS Application Data: spdy,
Content Type: Application Data (23),
Version: TLS 1.1 (0x0302)

The client sends a SPDY packet encrypted with
the Master Key.

TCP ACK
TCP Segment Len: 0,
Sequence number: 3615 (relative sequence number)

TLS Application Data: spdy The server sends a SPDY packet encrypted with
the Master Key.

TLS Application Data: spdy

TCP ACK

TLS Application Data: spdy

TLS Application Data: spdy

TCP ACK

TLS Application Data: spdy

TLS Application Data: spdy

TCP ACK

TLS Application Data: spdy

TLS Application Data: spdy

TCP ACK

TLS Application Data: spdy

TLS Application Data: spdy

TCP ACK

Encrypted TLS data transfer

TLS Encrypted Alert
TLSv1.1 Record Layer: Encrypted Alert,
Content Type: Alert (21),
Version: TLS 1.1 (0x0302)

The client sends an Alert (Close) to release the
TLS connection.

TCP FIN, ACK
TCP Segment Len: 0,
Sequence number: 661 (relative sequence number)

The client also initiates the release of the TCP
connection with a FIN.

TCP ACK
TCP Segment Len: 0,
Sequence number: 16865 (relative sequence number)

TCP FIN, ACK
TCP Segment Len: 0,
Sequence number: 16865 (relative sequence number)

The server also releases the TCP connection.

TCP ACK
TCP Segment Len: 0,
Sequence number: 662 (relative sequence number)

Releasing the TLS connection

http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/14.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/15.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/16.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/17.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/18.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/19.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/20.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/21.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/22.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/23.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/24.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/25.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/26.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/27.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/28.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/29.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/30.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/31.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/32.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/33.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/34.htm
http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/35.htm

Client Server

TCP ACK
TCP Segment Len: 0,
Sequence number: 16866 (relative sequence number)

Generated with EventStudio (http://www.eventhelix.com/eventstudio/) and VisualEther (http://www.eventhelix.com/visualether/)

EXPLORE MORE

SSL Sequence Diagram http://www.eventhelix.com/realtimemantra/networking/SSL.pdf

Networking Protocol Flows http://www.eventhelix.com/realtimemantra/networking/

LTE http://www.eventhelix.com/lte/

http://www.eventhelix.com/realtimemantra/networking/ssl-tls/details/36.htm

	HTTPS SSL/TLS Session for SPDY Sequence Diagram
	SequenceProject
	TCP Connection Establishment
	SSL/TLS Initial Cryptographic Parameter Negotiation
	Certificate Exchange and Encryption Start
	Server: Setup Elliptic Curve Cryptography
	Client: Setup Elliptic Curve Cryptography

	Generate Master Key
	Encrypted TLS data transfer
	Releasing the TLS connection

