
Client App Network

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

TCP (Transmission Control Protocol) provides a reliable end to end service that delivers packets over the Internet. Packets are
delivered in sequence without loss or duplication.

This sequence diagram explores following: (1) The three-way handshake to establish a TCP (2) Data transfer using the byte
oriented sequence numbers (3) Release of a TCP connection.

The TCP socket creation and deletion on the server and client is also covered.

Server awaits client socket connections.

Client Socketcreate Client Application creates Socket

Closed The socket is created in the Closed state

seq_num = 0 Initial sequence number is set to 0

Client socket initialization

Socket initialization

Active_Open Application wishes to communicate with a
destination server using a TCP connection. The
application opens a socket for the connection in
active mode. In this mode, a TCP connection will
be attempted with the server.
Typically, the client will use a well known port
number to communicate with the remote Server.
For example, HTTP uses port 80.

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

Client sets the SYN bit in the TCP header to
request a TCP connection. The sequence number
field is set to 0. Since the SYN bit is set, this
sequence number is used as the initial sequence
number

SYN Sent Socket transitions to the SYN Sent state

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Client receives the "SYN+ACK" TCP segment

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Client now acknowledges the first segment, thus
completing the three way handshake. The receive
window is set to 5000. Ack sequence number is
set to 101, this means that the next expected
sequence number is 101.

Established At this point, the client assumes that the TCP
connection has been established

Client initiated three way handshake to establish a TCP
connection

Client to server data transfer

Data transfer phase: Here a short data transfer takes place, thus TCP slow
start has little impact

Client App Client Socket Network

Data
size = 1024

Client application sends 1024 bytes of data to the
socket

Split data into TCP segments This TCP connection limits TCP segments to 512
bytes, thus the received data is split into 2 TCP
segments

TCP Segment
seq_num = 1,
len = 512

The first TCP segment is sent with a sequence
number of 1. This is the sequence number for the
first byte in the segment.
(Note that unlike other protocols, TCP maintains
sequence numbers at byte level. The sequence
number field in the TCP header corresponds to the
first byte in the segment.)

TCP Segment
seq_num = 513,
len = 512

Bytes in the first TCP segment correspond to 1 to
512 sequence numbers. Thus, the second TCP
segment contains data starting with 513 sequence
number

ACK
ack_num = 1025

TCP Segment
seq_num = 1,
len = 512

TCP Segment
seq_num = 613,
len = 188

Client has received both the TCP segments

Assemble TCP Segments

Data
size = 700

Socket passes data to Client application

ACK
ack_num = 701

Client sends a TCP ACK with the next expected
sequence number set to 701

Server to client data transfer

Close Client application wishes to release the TCP
connection

FIN Client sends a TCP segment with the FIN bit set in
the TCP header

FIN Wait 1 Client changes state to FIN Wait 1 state

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state,
the TCP connection from the client to server is
closed. Client now waits close of TCP connection
from the server end

Client to server TCP connection release

Server to client TCP connection release

Client closes TCP connection

Client App Client Socket Network

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where the
last ack has been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN
retry

Close_Timer Close timer has expired. Thus the client end
connection can be closed too.

Closed

delete

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

	TCP - Transmission Control Protocol
	TCP Connection Setup and Release
	Socket initialization
	Client socket initialization

	Client initiated three way handshake to establish a TCP connection
	Data transfer phase: Here a short data transfer takes place, thus TCP slow start has little impact
	Client to server data transfer
	Server to client data transfer

	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release

