
Client Net Server

Network Server App

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

We have already seen that TCP connection starts up in slow start mode, geometrically increasing the congestion window
(cwnd) until it crosses the slow start threshold (ssthresh). Once cwnd is greater that ssthresh, TCP enters the congestion
avoidance mode of operation. In this mode, the primary objective is to maintain high throughput without causing congestion. If
TCP detects segment loss, it assumes that congestion has been detected over the internet. As a corrective action, TCP
reduces its data flow rate by reducing cwnd. After reducing cwnd, TCP goes back to slow start.

Server
Socket

create Server Application creates a Socket

Closed The Socket is created in Closed state

seq_num = 100 Server sets the initial sequence number to 100

Passive_Open Server application has initiated a passive open. In this mode,
the socket does not attempt to establish a TCP connection. The
socket listens for TCP connection request from clients

Listen Socket transitions to the Listen state

Server socket initialization

Server awaits client socket connections.

Socket initialization

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

SYN TCP segment is received by the server

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Server sets the SYN and the ACK bits in the TCP header.
Server sends its initial sequence number as 100. Server also
sets its window to 65535 bytes. i.e. Server has buffer space for
65535 bytes of data. Also note that the ack sequence numer is
set to 1. This signifies that the server expects a next byte
sequence number of 1

SYN Received Now the server transitions to the SYN Received state

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Server receives the TCP ACK segment

Established Now the server too moves to the Established state

Client initiated three way handshake to establish a
TCP connection

TCP session begins with 'Slow Start' Click on the action title for a detailed description of the TCP
slow start.

TCP congestion window grows from 512 bytes (1 segment) to
64947

TCP congestion window grows at the start of the session if no
segment losses are detected during slow start). During slow
start the congestion window was being incremented by 1
segment for every TCP Ack from the other end.

Slow start

http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start

Client Net Server

Client
Socket

Network Server
Socket

Server App

TCP Segment
seq_num = 100000,
len = 512

TCP Segment
seq_num = 100512,
len = 512

Data Data is forwarded to the server side application

ACK
ack_num = 101024,
window = 80000

Client acknowledges the last block and also signals an increase
in receiver window to 80000

About to exit slow start

TCP Segment
seq_num = 101024,
len = 512

TCP Segment
seq_num = 101536,
len = 512

Data Data is forwarded to the server application

ACK
ack_num = 102048,
window = 80000

cwnd is incremented using the formula: cwnd = cwnd +
(segment_size segment_size) / cwnd)

TCP Segment
seq_num = 102048,
len = 512

Some node in the Internet drops the TCP segment due to
congestion

A TCP segment is lost

Congestion Avoidance

TCP Segment
seq_num = 102048,
len = 512

Data Data is finally given to the server application

ACK
ack_num = 102560

Back to slow start

Client Net Server

Client
Socket

Network Server
Socket

Server App

TCP window continues to grow exponentially until it reaches the
ssthresh (=32731) value

TCP Segment
size = 512

TCP Segment
size = 512

Data
size = 1024

First part of the data is delivered

ACK

TCP Segment
size = 512

TCP Segment
size = 512

Data
size = 1024

Second Part of the data is delivered

ACK

TCP Segment
size = 512

TCP Segment
size = 512

Data
size = 1024

Third Part of the data is delivered

ACK

FIN Server receives the FIN

ACK Server responds back with ACK to acknowledge the FIN

Close Wait Server changes state to Close Wait. In this state the server
waits for the server application to close the connection

Client to server TCP connection release

Close Server application closes the TCP connection

FIN FIN is sent out to the client to close the connection

Last Ack Server changes state to Last Ack. In this state the last
acknowledgement from the client will be received

ACK Server receives the ACK

Closed Server moves the connection to closed state

Server to client TCP connection release

Client closes TCP connection

Client Net Server

Client
Socket

Network Server
Socket

Server App

delete

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

	TCP - Transmission Control Protocol
	TCP Congestion Avoidance
	Socket initialization
	Server socket initialization

	Client initiated three way handshake to establish a TCP connection
	Slow start
	About to exit slow start

	Congestion Avoidance
	A TCP segment is lost

	Back to slow start
	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release

