
Server_Socket Interfaces (TCP Fast Retransmit and Recovery)
Internet Server Node

Net Server
Network Server App

EventStudio System Designer 6

28-Jul-13 11:44 (Page 1)

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

TCP Slow Start and Congestion Avoidance lower the data throughput drastically when segment loss is detected. Fast
Retransmit and Fast Recovery have been designed to speed up the recovery of the connection, without compromising its
congestion avoidance characteristics.

Fast Retransmit and Recovery detect a segment loss via duplicate acknowledgements. When a segment is lost, TCP at the
receiver will keep sending ack segments indicating the next expected sequence number. This sequence number would
correspond to the lost segment. If only one segment is lost, TCP will keep generating acks for the following segments. This will
result in the transmitter getting duplicate acks (i.e. acks with the same ack sequence number)

Server Socket create Server Application creates a Socket

Closed The Socket is created in Closed state

seq_num = 100 Server sets the initial sequence number to 100

Passive_Open Server application has initiated a passive open. In this mode, the socket
does not attempt to establish a TCP connection. The socket listens for
TCP connection request from clients

Listen Socket transitions to the Listen state

Server socket initialization

Server awaits client socket connections.

Socket initialization

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

SYN TCP segment is received by the server

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Server sets the SYN and the ACK bits in the TCP header. Server sends
its initial sequence number as 100. Server also sets its window to 65535
bytes. i.e. Server has buffer space for 65535 bytes of data. Also note
that the ack sequence numer is set to 1. This signifies that the server
expects a next byte sequence number of 1

SYN Received Now the server transitions to the SYN Received state

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Server receives the TCP ACK segment

Established Now the server too moves to the Established state

Client initiated three way handshake to
establish a TCP connection

TCP Connection begins with slow start. The congestion window grows from an initial 512 bytes to 70000 bytes

Loss of a TCP segment

Server_Socket Interfaces (TCP Fast Retransmit and Recovery)
Internet Server Node

Net Server
Network Server Socket Server App

EventStudio System Designer 6

28-Jul-13 11:44 (Page 2)

TCP Segment
seq_num = 100000

TCP segment (start sequence number = 100000) is delivered to the
receiver

Data
size = 512

TCP passes 512 bytes of data to the higher layer

TCP Segment
seq_num = 101024

TCP Segment with start sequence number 101024 is received. TCP
realizes that a segment has been missed. TCP buffers the out of
sequence segment as TCP cannot deliver out of sequence data to the
application.

ACK
ack_num = 100512

TCP sends an acknowledgement to the Sender with the next expected
sequence number set to 100512.

TCP Segment
seq_num = 101536

TCP receives the next segment. This and the following out of sequence
segments will be buffered by TCP.

ACK
ack_num = 100512

TCP sends another acknowledgement with the next expected sequence
number still set to 100512. This is a duplicate acknowledgement

TCP Segment
seq_num = 102048

ACK
ack_num = 100512

TCP keeps acknowledging the received segments with the next
expected sequence number as 100512

TCP Segment
seq_num = 102560

ACK
ack_num = 100512

TCP Segment
seq_num = 103072

ACK
ack_num = 100512

TCP Segment
seq_num = 103584

ACK
ack_num = 100512

Fast Retransmit: TCP receives duplicate
acks and it decides to retransmit the
segment, without waiting for the segment
timer to expire. This speeds up recovery
of the lost segment

Fast Recovery: Once the lost segment has been
transmitted, TCP tries to maintain the current data
flow by not going back to slow start. TCP also
adjusts the window for all segments that have been
buffered by the receiver.

Fast Recovery

Server_Socket Interfaces (TCP Fast Retransmit and Recovery)
Internet Server Node

Net Server
Network Server Socket Server App

EventStudio System Designer 6

28-Jul-13 11:44 (Page 3)

TCP Segment
seq_num = 100512

Finally, the retransmitted segment is delivered to the server

Data
size = 3584

Now TCP can pass the just received missing segment and all the
buffered segments to the application layer

ACK
ack_num = 104096

Now TCP acknowledges all the segments that it had buffered

Congestion Avoidance

FIN Server receives the FIN

ACK Server responds back with ACK to acknowledge the FIN

Close Wait Server changes state to Close Wait. In this state the server waits for the
server application to close the connection

Client to server TCP connection release

Close Server application closes the TCP connection

FIN FIN is sent out to the client to close the connection

Last Ack Server changes state to Last Ack. In this state the last acknowledgement
from the client will be received

ACK Server receives the ACK

Closed Server moves the connection to closed state

delete

Server to client TCP connection release

Client closes TCP connection

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

	TCP - Transmission Control Protocol
	TCP Fast Retransmit and Recovery
	Socket initialization
	Server socket initialization

	Client initiated three way handshake to establish a TCP connection
	Loss of a TCP segment
	Fast Recovery
	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release

